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Abstract

When explaining the declining labor income share in advanced economies, the
macro literature finds that the elasticity of substitution between capital and labor is
greater than one. However, the vast majority of micro-level estimates shows that capi-
tal and labor are complements (elasticity less than one). Using firm- and establishment-
level data from Korea, we divide capital into equipment and software, as they may
interact with labor in different ways. Our estimation shows that equipment and la-
bor are complements (elasticity 0.6), consistent with other micro-level estimates, but
software and labor are substitutes (1.6), a novel finding that helps reconcile the macro
vs. micro elasticity discord. As the quality of software improves, the labor share
falls within firms because of factor substitution and endogenously rising markup. In
addition, production reallocates toward firms that use software more intensively, as
they become effectively more productive. Because in the data these firms have higher
markups and lower labor shares, the reallocation further raises the aggregate markup
and reduces the aggregate labor share. The rise of software accounts for two-thirds of
the labor share decline in Korea between 1990 and 2018. The factor substitution and
the markup channels are equally important.
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Software is eating the world.

— Marc Andreessen (The Wall Street Journal, August 20, 2011)

1 Introduction

The labor share remained more or less constant for much of the 20th century. For

example, Keynes (1939) wrote that “the stability of the proportion of the national

dividend accruing to labour” was “one of the most surprising, yet best-established,

facts.” However, the labor share started a downward trend in the United States and

other advanced economies since the 1980s. With the heightened interest in economic

inequality after the financial crisis of 2007–08, economists have raised a variety of

explanations for the decline of the labor share, as reviewed by Aum and Shin (2020)

and Grossman and Oberfield (2022).

One of the leading explanations is that capital and labor are substitutes, and the

more efficient production of capital goods reduced the labor share over time (Karabar-

bounis and Neiman, 2013). This explanation however is at odds with the majority of

micro-level estimates that find capital (specifically equipment) and labor are actually

complements, with an elasticity of substitution less than one (Antras, 2004; Raval,

2019; Oberfield and Raval, 2021, among others).

We address this macro vs. micro elasticity discord by dividing capital into equip-

ment and software, as their interactions with labor may differ. We estimate the elas-

ticity of substitution across software, equipment, and labor, both at the micro and

the macro levels. We then quantify the distinct role of software and equipment price

changes (or software/equipment-embodied technological changes) in driving the de-

cline of the labor share.

The macro elasticity differs from the micro elasticity, because changes in factor

prices not only alter the factor income shares within firms, but also reallocate re-

sources across firms that are heterogeneous in factor intensities (Houthakker, 1955;

Jones, 2005; Oberfield and Raval, 2021). The estimation of the macro elasticity there-

fore requires micro-level data capturing this cross-sectional distribution of factor

shares. More important, for the purpose of separating the elasticity of substitution

between software and labor from that between equipment and labor, one needs

micro-level data by capital types. Typically, software is lumped together with other

intangibles, a category with immense measurement problems.

We use firm-level and plant-level data from Korea, where firms keep track of their

software investment to comply with local accounting standards, separately from other
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categories of intangibles that are more prone to missing values and other measure-

ment problems.

There are reasons to think that software deserves separate investigation. For one,

the evolution of the software investment share in the aggregate time series in the US

aligns with the dynamics of the labor share, whereas the equipment share does not

(Aum and Shin, 2020). For another, software and equipment usage varies across occu-

pations in the US data, with software being primarily used by high-skill occupations

and equipment by middle-skill ones (Aum, 2020), which suggests that the two interact

with labor in different ways.

We start with two empirical patterns in the Korean data that further validate the

case for investigating software separately from equipment. First, firm-level panel re-

gressions show that firms’ software intensity predicts a decrease in the labor share, es-

pecially the income share of non-production, white-collar workers. In contrast, firms’

equipment intensity makes no meaningful prediction either way. Second, in a cross-

section of regions, software expenditure shares and local wages are negatively related,

but equipment shares and local wages do not have a significant relationship.

To estimate the macro elasticity of substitution between labor and the two types

of capital, we build on the approach of Oberfield and Raval (2021). Our contribution

is to allow for three factors (labor, equipment, and software) and variable markups,

which leads to two novel theoretical results. First, in terms of factor substitution, the

role of reallocation depends on the covariance between factor shares across firms, in

addition to the variance of factor shares. This is because, unlike in a two-factor model,

a high software share of a firm does not necessarily imply a low labor share—it could

be that its equipment share is very low and the labor share is also high. Second,

variable markups introduce an additional margin of adjustment in the labor share

both through within-firm and between-firm adjustments in markups in response to

factor price changes.

Using this theoretical framework, we first estimate the micro elasticity of substi-

tution between labor and either type of capital by instrumenting for wage variations

across regions or industries. We find that the elasticity of substitution between labor

and equipment is less than one (0.6), consistent with the micro-level estimates from

the US and other countries. The novel finding is that the elasticity of substitution be-

tween labor and software is greater than one (1.6). We obtain very similar estimates

with firm-level and plant-level data, and with regional shift-share instruments and

industry-level minimum-wage instruments. Because software and labor are substi-

tutes at the micro level, a fall in software price reduces the labor share within a firm.
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The effect is aimplified by the variable markups, as firms charge higher markups in

response, further reducing labor shares within firms.

The firms using software more intensively benefit more from the fall in software

prices. They become effectively more productive and hence larger than those using

less software. Using the joint distribution of factor shares and markups from the micro

data, we calculate the macro elasticity, accounting for such reallocation across firms.

In the data, firms with high software shares tend to have lower-than-average labor

shares. (Again, with three factors, they need not.) Hence the reallocation further

reduces the aggregate labor share. Also in the data, high software share firms tend to

have higher markups. The implied low demand elasticity dampens the magnitude of

the reallocation (relative to a constant markup environment). Still, the reallocation to

high markup firms does raise the aggregate markup.

Quantitatively, the decrease in software prices accounts for two-thirds of the labor

share decline in Korea between 1990 and 2018. Slightly more than half of the effect

comes through the markup channel (52 percent), and the rest (48 percent) through the

factor substitution channel. One immediate implication is that the rise of the software

or intangibles income share in the accounting sense, highlighted by Koh et al. (2020),

will underestimate the role of software in the decline of the labor income share by

more than 50 percent, as it misses the impact through the changes in markups. The

effect through the markup channel can be attributed almost equally to within-firm

markup growth and the between-firm reallocation. By contrast, nearly all the effect

through the factor substitution channel is due to within-firm factor substitution.

By contrast, the decline in equipment prices has a negligible effect on the aggre-

gate labor income share, because two opposing effects cancel each other out. The

factor substitution channel pushes up the labor share because equipment and labor

are complements within firms, even after factoring in the between-firm reallocation.

The resulting rise in markups reduces the labor share.

The importance of markups and the between-firm reallocation for the labor share

decline in Korea that we find is consistent with the findings of Autor et al. (2020) and

Kehrig and Vincent (2021) for the US, although they do not specify the cause of the

reallocation. The role of within-firm markup growth in our analysis aligns with the

emphasis on within-firm sales growth in Kehrig and Vincent (2021).

In summary, it is software, not equipment, that substitutes for labor and reduces

the labor income share. The resulting within-firm markup growth and the reallocation

toward high markup firms are quantitatively important channels through which the

fall in software prices reduces the aggregate labor share. Our analysis helps reconcile
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the macro vs. micro elasticity discord surrounding the labor share decline. It also

shows that the rise of software is driving the well-documented reallocation toward

large firms with high markups and low labor shares.

Related literature The elasticity of substitution between labor and capital is a cru-

cial parameter in economic theory, and numerous studies have attempted to estimate

it. One complication is that the elasticity at the level of individual firms or establish-

ments may differ from the elasticity at the level of the aggregate economy. Oberfield

and Raval (2021) provide a framework to compute the macro elasticity from micro

elasticity estimates and the distribution of factor intensities across firms. Our work

extends theirs to consider two distinct types of capital that can interact with labor in

different ways and to allow endogenous changes in markups.

Related to our paper, Lashkari et al. (2023) study the interplay of capital-embodied

technological change, labor share, and market concentration. Their focus is the role of

information technology (IT), which has increasing returns to scale. Using French firm-

level data, they find that the elasticity of substitution between IT capital (an amalgam

of hardware and software) and labor is still less than one. (They assume that the

elasticity of substitution between non-IT capital and labor is one.) Our paper separates

software and equipment, and shows that software substitutes for labor but equipment

does not. It also emphasizes the role of variable markups.1

Our work also relates to the macroeconomic literature on capital-embodied tech-

nological change, for example, Greenwood et al. (1997), Greenwood et al. (2000), and

Cummins and Violante (2002). Krusell et al. (2000) showed that capital-embodied

technological change and the complementarity between skilled labor and capital

drove up the skill premium in the US, focusing exclusively on equipment capital. Our

micro data does not allow us to differentiate labor by skill, but we did run a skilled

vs. unskilled labor exercise using aggregate time series. We found that both skilled

labor and unskilled labor are substitutes with respect to software, but skilled labor

is less substitutable. Likewise, both types of labor are complements with respect to

equipment capital, but skilled labor is more complementary. To the extent that the

skill premium result of Krusell et al. (2000) only requires that skilled labor is more

complementary or less substitutable with respect to capital than is unskilled labor,

our findings are consistent.

This paper also relates to the research showing that the decline in the labor share

1A related paper is de Souza and Li (2023). It divides equipment into robots vs. tools, and finds evidence
that robots substitute for labor but tools complement labor in Brazilian data.
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partly reflects the misclassification of labor compensation as capital income, especially

when workers are involved in the production or utilization of intangible capital. Koh

et al. (2020) raised this possibility. Eisfeldt et al. (2023) document a rise in equity-based

compensation of high-skill workers and show that their labor income share did not

fall, when their equity-based compensation is accurately classified as labor income.

Some recent studies have pointed to the role of intangible capital in technologi-

cal advancement (Corrado et al., 2009, 2022). However, few asked whether and how

intangible capital and tangible capital may interact with other production factors in

different ways. Exceptions include Aum and Shin (2020), which showed that indus-

tries with higher software intensity experienced a more rapid decline in labor share in

the US. Another is Aum (2019), which documented that the correlation between labor

and software across regions is distinct from the correlation between labor and equip-

ment.2 Our paper substantiates and rationalizes such suggestive evidence through a

structural estimation of the micro and the macro elasticities of substitution between

equipment and labor and between software and labor.

The data we use in our analysis predate the ebullience surrounding artificial in-

telligence (AI) and its implication for the economy unleashed by OpenAI’s ChatGPT

in 2022. Eisfeldt et al. (2023) provide some evidence that Generative AI, which is an

extremely powerful class of software, is on net a substitute for labor, consistent with

our finding regarding more conventional software.

The rest of the paper is structured as follows. We document relevant empirical

facts in Section 2. In Section 3, we introduce our model framework. We then es-

timate micro elasticities and aggregate them into macro elasticities in Section 4. In

Section 5, we quantify the contribution of software-embodied technological change to

the decline in the aggregate labor income share through various channels. Section 6

concludes.

2 Motivating Facts

In this section, we describe the data used in our analysis and present the distinct

empirical patterns exhibited by software and equipment.

Aggregate Trends Before going into the micro-level data, we provide an overview

of the evolution of the labor income share and the capital income shares by capital

2Related, Park (2022) finds that an occupation’s software intensity determines whether its employment
share will grow or shrink during an investment boom.
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type in Korea. The labor income share is labor income divided by the sum of labor

income, capital income, and profits.3 To calculate capital income, one needs estimates

of the gross rate of return for each type of capital. We assume that the gross return Rj

for capital type j satisfies the no-arbitrage condition:

Rj = (1 + r)pj
t−1 − (1 − δj)pj

t, (1)

where r is the net rate of return, pj
t is the price of capital j in period t, and δj is the

depreciation rate of capital j. We use K j, pj, and δj from the National Accounts, and

the corporate bond rate net of expected inflation to compute gross return on capital

according to (1)—see Appendix B for details.

.45
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Fig. 1: Labor Income Share in Korea

Figure 1 plots the aggregate labor income share from 1980 to 2018, which declined

over time, especially in the 1990s and the 2000s.

We plot the ratio between labor income and type-j capital income in log, log wL −
log RjKj, in Figure 2. Software income grew faster than labor income (black solid line),

whereas equipment income, if anything, decreased relative to labor income (gray solid

line). The growth of software income relative to labor income was most pronounced

3Our measure of the labor income share is the gross labor share adjusted for proprietors’ income (Gollin,
2002; Park, 2020). There have been debates about whether the decline in the net labor share in Korea is
merely a measurement issue related to self-employment. Park (2020) showed that the net labor income
share is sensitive to how one treats the changing share of “self-employed with employees,” whose com-
pensation is already included in total compensation. We follow Park (2020) and make adjustments only for
“self-employed without employees.” Our focus is on the gross labor share, because software, the produc-
tion factor we are interested in, has a higher depreciation rate than other factors. The declining trend of the
gross labor share is barely affected by the proprietor income adjustment. See Appendix B.1.3 for additional
details.
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Fig. 2: Labor Income Relative to Capital Income by Capital Type

in the 1990s and the early 2000s, coinciding with the period of the steepest labor share

decline in Figure 1.4 This suggests that the fall in the aggregate labor income share

has more to do with software than equipment.

Researchers typically infer the technological change specific to capital goods from

the declines in the relative price of investment to consumption (e.g., Cummins and

Violante, 2002). Following the literature, we use the five-year moving average of the

inverse of the price of software and equipment investment relative to consumption to

measure the technological change embodied in them.5

Figure 3 plots the relative price of investment to consumption by capital type.

Both equipment (left panel) and software (right panel) have experienced substantial

capital-embodied technological change, inferred from the rapid decline in their rela-

tive price to consumption. It is noteworthy that software price fell more rapidly than

equipment price.

These observations are not unique to Korea. For instance, the changes in the price

4The “other” category of capital (dashed line) in Figure 2 includes residential capital, structure, and
R&D capital.

5One issue with the Korean National Accounts is that the software price index may underestimate
software-embodied technological change. Since 1994, the price index of software investment comes from
the producer price index, which may fail to capture quality improvements. To address this concern, we
adjust the software price index following Parker and Grimm (2000), as does the US Bureau of Economic
Analysis (BEA). BEA makes a bias adjustment of 3.15 percent per year to the producer price index from the
Bureau of Labor Statistics to compensate for the discrepancy between the hedonic method and the matched
model method.

8



-1
.2

-.8
-.4

0
.4

19
90

=0

1980 1990 2000 2010 2020

Korea US

(a) Equipment

-1
.2

-.8
-.4

0
.4

19
90

=0

1980 1990 2000 2010 2020

Korea US

(b) Software

Fig. 3: Relative Price of Investment to Consumption by Capital Type

The solid lines correspond to Korea, while the dashed lines correspond to the US. We com-
pute five-year moving averages of the relative prices and normalize them to 0 in the year
1990.

of equipment and software relative to consumption are remarkably similar between

Korea and the US, as shown by the solid and the dashed lines in both panels of Figure

3. In addition, consistent with the patterns in Figure 2, Aum and Shin (2020) show

that an industry’s software intensity is the one variable that is systematically corre-

lated with its labor share decline, based on industry-level data from the US. However,

the US micro-level data do not separate software from the broader category of intan-

gibles, which comes with immense measurement problems. For this reason, we turn

to micro-level data from Korea for our analysis.

Micro-level Data We use two datasets that have information on equipment and

software as factors of production at the micro level. One is KISDATA, covering firms

in Korea from 2003 to 2018. This dataset is a compilation of firm-level financial state-

ments, provided by NICE Information Service. It covers firms listed in the Korea Stock

Exchange, as well as those unlisted firms subject to external audit requirements.6

Compared with the National Accounts, our KISDATA sample accounts for 47 and

56 percent of the compensation of employees and the operating surplus, respectively,

of the entire non-financial corporate sector in 2018.

One key advantage of KISDATA is that it reports assets by type, for example, dis-

6The criteria for external audit requirement vary over time. Until 2008, firms whose asset exceeded 7
billion KRW (about 6.4 million USD in 2008) had to be audited externally. Since 2009, firms with (i) assets
greater than 10 billion (12 billion since 2014) KRW, or (ii) assets greater than 7 billion KRW and liability
greater than 7 billion KRW, or (iii) assets greater than 7 billion KRW and more than 300 employees had to
undergo external audits.
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tinguishing equipment from software. This is partly thanks to the Korea Generally

Accepted Accounting Principles (K-GAAP). International Financial Reporting Stan-

dards (IFRS) are rule-based and mandate only a minimal number of items in financial

statements. As a result, firm-level financial statements reported under IFRS usually

do not disaggregate firms’ assets by type. However, K-GAAP provides detailed fi-

nancial statement accounts with standard formats.7 This unique aspect of the Korean

accounting principles enables us to investigate the separate roles of equipment and

software. We construct firm-level labor compensation, value added, and software

and equipment assets to construct labor share and capital intensities at the firm level.

More details on data construction and summary statistics are in Appendix B.

The other dataset is the establishment-level data from the 2015 Korean Economic

Census. Conducted every five years, the census surveys all establishments with at

least one employee as of December 31 of that year. For those in the manufacturing

sector, the census gathers data on intangible assets by type, including externally pur-

chased software, for all uni-establishment firms and corporate headquarters of multi-

establishment firms.8 The census also contains information on annual payroll and

equipment capital, among others. It also records the location of establishments, which

enables us to utilize variations across regions.

Patterns in the Micro-level Data We begin by showing that firms’ software inten-

sity predicts a fall in labor share, but their equipment intensity makes no meaningful

prediction. The regression equation is:

yi,t = γi + αt + βssi,t−1 + βeei,t−1 + ε i,t , (2)

where si,t−1 is the software intensity (software asset divided by value added) of firm

i in year t − 1, ei,t−1 is its equipment intensity (equipment asset divided by value

added), γi is the firm fixed effect, and αt is the time fixed effect.

The estimation results are in Table 1. In the KISDATA, firms’ software intensity

in year t − 1 predicts a faster decline of their labor share (first column) and a higher

sales growth (last column) between t − 1 and t. Firms’ equipment intensity, on the

7Since 2010, listed firms in Korea have adopted K-IFRS and no longer follow K-GAAP. However, com-
panies that had followed K-GAAP before 2010 continue to report detailed accounts. In fact, the number of
firms reporting software as a separate asset type has steadily increased since 2010.

8That is, the census surveys firm-level rather than establishment-level software assets, as intangible
assets at the establishment level are not well defined. In our benchmark analysis, we assume each es-
tablishment of a multi-establishment firm uses the same amount of software as its headquarters—that is,
software is non-rivalrous within a firm. In a robustness check, we limit our sample to uni-establishment
firms and obtain nearly the same result.
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∆Labor Share ∆ log
SalesTotal Non-production Production

si,t−1 -0.287*** -0.195*** -0.102*** 0.392***
(0.049) (0.044) (0.013) (0.126)

ei,t−1 -0.009 -0.006 -0.004 0.030**
(0.007) (0.004) (0.003) (0.015)

N 44,364 43,759 40,626 44,356
R2 0.189 0.207 0.191 0.291

Table 1: Capital Intensities, Labor Share and Sales Change at the Firm Level

Standard errors are clustered at the firm level. *, **, and *** indicate significance at the 10, 5,
and 1 percent level, respectively.

other hand, is not significantly related to changes in the labor share, although it does

predict faster sales growth. These results suggest that software may be the driving

force behind the empirical fact documented by Kehrig and Vincent (2021): those es-

tablishments whose labor share fell and sales increased at the same time account for

most of the aggregate labor share decline in the US manufacturing sector.

Another finding is that software intensity predicts a steeper fall in the income

share of non-production workers than that of production workers (second and third

columns). This finding suggests that different workers may be affected differently by

the rise of software, but the limited dimension of worker heterogeneity in our micro-

level data (essentially, production vs. non-production workers) discourages a richer

analysis in this direction.

Aggregating the manufacturing establishments in the census to the region level

(Si-Gun-Gu, of which there are 162), we compute the correlation between the average

wage of a region and the shares of capital income by capital type in the region.9 Fig-

ure 4 depicts the relationship between the log of the ratio of regional expenditures on

capital (either software or equipment) to labor on the y-axis against the log of local

wages on the x-axis. The ratio of software to labor expenditures tends to be higher in

regions with higher local wages (solid gray line). The ratio of equipment to labor ex-

penditures shows, if anything, a negative correlation with local wages (black dashed

line). This cross-sectional pattern complements the time-series evidence in Figure 2,

suggesting that the decline in the aggregate labor share has more to do with software

than equipment. More specifically, the finding that regions with higher wages spend

9Regional average wages are constructed from yet another dataset, Regional Employment Survey, con-
trolling for various worker characteristics.
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Fig. 4: Relationship between Local Wage and Factor Shares

Each dot represents a region (Si-Gun-Gu, an administrative unit in Korea). A region’s aver-
age wage is from the Regional Employment Survey, controlled for workers’ education, age,
gender, and experience.

relatively more on software but not on equipment points to the possibility that soft-

ware substitutes for labor more than does equipment.

To summarize, the patterns in the Korean data suggest that software may be the

key to understanding the decline in the aggregate labor income share. At the aggre-

gate level, it is software income, not equipment income, that grew at a faster rate than

labor income. At the firm level, software intensity predicts a faster decline in labor

income share, but equipment intensity does not. Furthermore, in regions with higher

wages, establishments have higher ratios of software income to labor income, but no

such relationship exists for the ratio between equipment income and labor income.

Motivated by the multitudes of suggestive evidence, we now turn to a more rigor-

ous and definitive analysis of the role of software in the decline of labor share and

the rise of markups, both within firms and in the aggregate through between-firm

reallocation.
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3 Theory

3.1 Model

To investigate the role of software in shaping factor income shares, we consider a

production function that has software and equipment as separate inputs, as well as

labor and materials. We define a production of firm i as follows.

Yi =


[(

αL
i (ALLi)

σe−1
σe + αK

i (AKKi)
σe−1

σe

) σe(σs−1)
(σe−1)σs + αS

i (ASSi)
σs−1

σs

] σs(σm−1)
(σs−1)σm

+ αM
i M

σm−1
σm

i


σm

σm−1

(3)

Yi is output, Li is labor, Ki is tangible capital (or equipment), Si is software, and Mi

is material input. αL
i , αK

i , αS
i , and αM

i are the intensities of labor, equipment, software,

and material input, respectively. All the inputs and intensities have subscript i, the

firm index. AL, AK, and AS represent economy-wide factor-augmenting technologies

for labor, equipment, and software, respectively. For notational convenience, we also

define the value added Vi and the equipment-labor bundle Xi as follows.

Vi ≡
[(

αL
i (ALLi)

σe−1
σe + αK

i (AKKi)
σe−1

σe

) σe(σs−1)
(σe−1)σs + αS

i (ASSi)
σs−1

σs

] σs
σs−1

(4)

Xi ≡
(

αL
i (ALLi)

σe−1
σe + αK

i (AKKi)
σe−1

σe

) σe
σe−1

. (5)

We note two properties of the production function in equation (3) that are relevant

for our analysis. First, two parameters separately govern the elasticity of substitu-

tion between labor and equipment (σe) and the elasticity between labor and software

(σs). That is, we can capture different labor share responses to technological changes

embodied in different types of capital. Second, all firms are different in how inten-

sively they use each factor, as captured by αi’s, implying that they will be affected

differently by an economy-wide factor-augmenting technological change. As a result,

aggregate changes in factor income shares depend not only on within-firm adjust-

ments but also on the reallocation of the production activity across firms. In other

words, the elasticity of substitution at the aggregate level will be different from the

elasticity of substitution at the firm level, as Oberfield and Raval (2021) showed using

a two-factor production function.

To allow for the possibility that software may trigger changes in markup within

firms and in the aggregate, we consider a Kimball (1995) aggregator. Specifically, we
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assume that aggregate production Y satisfies

∑
i

H(Yi/Y) = 1, (6)

where H(·) is an increasing and concave function and Yi is the firm-level production

in equation (3). This aggregator implies the demand for Yi given by

pi

p
= H′

(
Yi

Y

)
or

Yi

Y
= h

(
pi

p

)
, (7)

where h is the inverse function of H′. When H(x) = x
ϵ−1

ϵ , we obtain a standard CES

demand system with the constant elasticity of substitution ϵ.

From equation (7), d ln(Yi/Y) = [(h′(pi/p)pi/p)/h(pi/p)] × d ln(pi/p), which

gives the demand elasticity

ϵi = −h′(pi/p)pi/p
h(pi/p)

.

Firm i takes the factor prices of labor (w), equipment (r), software (q), and the price

of intermediate input (υ) as given. A firm’s profit maximization is

max
pi ,Yi ,Ki ,Si ,Mi

piYi − wLi − rKi − qSi − υMi,

subject to equations (3) and (7). The first-order conditions are:

w =piα
L
i A

σe−1
σe

L

(
Yi

Vi

) 1
σm
(

Vi

Xi

) 1
σs
(

Xi

Li

) 1
σe

, (8)

r =piα
K
i A

σe−1
σe

K

(
Yi

Vi

) 1
σm
(

Vi

Xi

) 1
σs
(

Xi

Ki

) 1
σe

, (9)

q =piα
S
i A

σs−1
σs

S

(
Yi

Vi

) 1
σm
(

Vi

Si

) 1
σs

, (10)

υ =piα
M
i

(
Yi

Mi

) 1
σm

, (11)

pi =µi (pi/p)


[

ϕi
1−σs + αS

i
σs

(
q

AS

)1−σs
] 1−σm

1−σs

+ αM
i

σm
υ1−σM


1

1−σM

, (12)

where µi(pi/p) is the optimal markup that satisfies µi(pi/p) = ϵi(pi/p)/(ϵi(pi/p)−
1). For notational convenience, we introduced ϕi, the price of the equipment-labor

bundle Xi:

ϕi ≡
(

αL
i

σ

e

(
w
AL

)1−σe

+ αK
i

σ

e

(
r

AK

)1−σe
) 1

1−σe

. (13)
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The factor market clearing conditions are

L = ∑
i

Li, K = ∑
i

Ki, and S = ∑
i

Si. (14)

Given L, K, and S, we can solve for the equilibrium from equations (3), (6), (7), (8), (9),

(10), (12), and (14).

3.2 Elasticity of Substitution between Factors
3.2.1 Micro-level Elasticity

We now analyze the changes in factor shares in response to factor-augmenting tech-

nological changes or exogenous changes in factor prices, which are governed by the

elasticity of substitution.

When there are more than two factors of production, there are multiple ways to

define the elasticity of substitution between any pair of factors. For example, the elas-

ticity of substitution between labor and equipment will vary, depending on whether

we fix both output and software or fix only output and allow software to adjust (Stern,

2011). Therefore, we need to first clarify what we call the elasticity of substitution be-

tween factors.

We focus on the simplest one, the Allen-Uzawa elasticity. The Allen-Uzawa elas-

ticity of substitution between factors x and y is defined as

σx,y =
CCxy

CxCy
,

where C is the cost function and Cx is its partial derivative with respect to the change

in the price of input x, while all other prices are held constant. In our framework, the

Allen-Uzawa elasticity of substitution between labor and equipment is simply σe, and

the one between labor and software is σs in the production function in equation (3).

Proposition 1 (Micro-level elasticity of substitution) The production function parame-

ters σe and σs satisfy the following.

σe =1 +
d ln rKi/wLi

d ln w/r
= 1 +

d ln ki/(1 − ki)

d ln w/r
, (15)

σs =1 +
d ln qSi/(wLi + rKi)

(1 − ki)dlnw/q + kid ln r/q
= 1 +

d ln si/(1 − si)

d ln ϕi/q
. (16)

Proof In Appendix A.

For convenience, we introduce new notations for the factor shares of costs within

firm i:

ki ≡
rKi

wLi + rKi
, ℓi ≡

wLi

wLi + rKi + qSi
,
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κi ≡
rKi

wLi + rKi + qSi
, si ≡

qSi

wLi + rKi + qSi
, mi ≡

υMi

wLi + rKi + qSi + υMi
.

We denote firm i’s equipment share of expenditures on equipment-labor bundle as

ki ≡ rKi/(wLi + rKi). Similarly, ℓi ≡ wLi/(wLi + rKi + qSi) is firm i’s labor share

of non-material cost, κi ≡ rKi/(wLi + rKi + qSi) is firm i’s equipment share of non-

material cost, and si ≡ qSi/(wLi + rKi + qSi) is firm i’s software share of non-material

cost. Lastly, mi ≡ νMi/(wLi + rKi + qSi + νMi) refers to firm i′s materials share of its

total cost.

Proposition 1 establishes that the direction of change in factor shares in response

to input price changes depends on whether σe and σs are greater than one or not.

For example, when the price of equipment (r) falls, the ratio of labor expenditure to

equipment expenditure (wLi/rKi) falls when σe > 1 but rises when σe < 1. Similarly,

when the price of software (q) falls, software expenditure relative to expenditures on

labor and equipment (qSi/(wLi + rKi)) rises when σs > 1 but falls when σs < 1.

We obtain the following corollary that input price changes and factor-augmenting

technological changes have equivalent effects on factor shares.

Corollary 1 The production function parameters σe and σs satisfy the following.

σe =1 +
d ln rKi/wLi

d ln AK/AL
= 1 +

d ln ki/(1 − ki)

d ln AK/AL
, (17)

σs =1 +
d ln qSi/(wLi + rKi)

(1 − ki)dlnAS/AL + kid ln AS/AK
= 1 +

d ln si/(1 − si)

d ln ϕi AS
. (18)

Proof In Appendix A.

In other words, we cannot separately identify the impacts of factor-augmenting tech-

nological changes from the impacts of factor price changes on factor shares. One im-

plication is that it is difficult to estimate the elasticities of substitution using aggregate

time-series data on factor shares and input prices, since factor-augmenting technolog-

ical changes are typically unobservable.

3.2.2 Macro-level Elasticity

Since we do not restrict how factor shares or equivalently αi’s in equation (3) are dis-

tributed across firms, the model does not give a well-defined aggregate production

function. However, as in Oberfield and Raval (2021), we can still derive the relation-

ship between the firm-level elasticities of substitution in Proposition 1 and the changes

in the aggregate factor income shares in response to factor price changes. The latter is

the aggregate elasticity of substitution, defined as follows. Note that going from the

usual two factors of production to three requires a new approach.
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Definition 1 (Aggregate elasticity of substitution) The aggregate elasticities of substi-

tution σ̄w
e , σ̄r

e , σ̄w
s , σ̄r

s , and σ̄
q
s are:

σ̄w
e ≡ 1 +

d ln rK/wL
d ln w

, (19)

σ̄r
e ≡ 1 − d ln rK/wL

d ln r
, (20)

σ̄w
s ≡ 1 +

d ln qS/(wL + rK)
wL/(wL + rK)× d ln w

, (21)

σ̄r
s ≡ 1 +

d ln qS/(wL + rK)
rK/(wL + rK)× d ln r

, (22)

σ̄
q
s ≡ 1 − d ln qS/(wL + rK)

d ln q
, (23)

Unlike in Oberfield and Raval (2021), we need to define the aggregate elasticity of

substitution between factors with respect to each input price w, r, and q. That is, even

for the same change in the relative factor price, w/r for example, the corresponding

change in the aggregate factor shares will depend on whether the wage increased or

the equipment price fell. This is because we have three factors of production (equip-

ment, software, and labor), not just two. For example, a firm with a low labor cost

share ℓi may also have a low equipment cost share κi, if its software cost share si is

high. In this case, firms that lose less than average from a wage increase do not neces-

sarily benefit more from a fall in equipment price. Accordingly, the reallocation across

firms will depend on which factor price changes, and the change in the aggregate la-

bor share in response to a higher wage can be different from the change in response

to a lower equipment price. This is not the case when there are only two factors, be-

cause firms’ labor share is equal to one minus their equipment share—that is, a perfect

negative correlation between factor shares.10

In addition, because our model features variable markups, each firm faces a

different demand elasticity. When the price of equipment falls, for example, it

makes equipment-intensive firms effectively more productive than others. If more

equipment-intensive firms face a lower demand elasticity (or higher markup), there

is less reallocation than in the case with a constant markup. With variable markups,

10The presence of material inputs in the production function (3) does not necessarily imply asymmetry
in the elasticity of substitution. This is because material inputs are a combination of factor inputs such as
labor, capital, and software, and hence any change in material price is endogenously determined by the
intensity of each factor input in the material goods production. We assume that factor intensities in the
material goods production are the same as those in the final good production. Related, Oberfield and Raval
(2021) has materials as another factor in the production function, but they obtain symmetry between labor
and capital by assuming that changes in the relative price of materials to capital are proportional to changes
in the relative price of labor to capital. Essentially, materials are produced by combining labor and capital
(in a Cobb-Douglas manner), so there are only two factors of production.
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the magnitude of reallocation across firms depends on how factor intensities are

correlated with firms’ markups.11 Again, with three inputs, the fact that labor shares

are positively correlated with markups does not necessarily mean that equipment

shares are negatively correlated with markups.

Now we derive our main proposition that links firm-level elasticities of substitu-

tion to the aggregate elasticities of substitution. We introduce additional notations for

convenience:

k ≡ rK
wL + rK

, ℓ ≡ wL
wL + rK + qS

, κ ≡ rK
wL + rK + qS

, s ≡ qS
wL + rK + qS

,

m ≡ υM
wL + rK + qS + υM

, θi ≡
wLi + rKi

wL + rK
, ωi ≡

wLi + rKi + qSi

wL + rK + qS
,

γi ≡
wLi + rKi + qSi + υMi

wL + rK + qS + υM
,

where k denotes aggregate equipment share of aggregate expenditures on labor and

equipment, ℓ is the aggregate labor expenditure share of aggregate non-material cost,

κ is the aggregate equipment share of aggregate non-material cost, si is the aggregate

software share of aggregate non-material cost, and m is the aggregate materials share

of aggregate total cost. In addituion, θi denotes firm i’s expenditures on labor and

equipment as a fraction of aggregate expenditures on labor and equipment, ωi is firm

i’s share of aggregate expenditures on non-material inputs, and γi is firm i’s share of

the aggregate total expenditure.

Proposition 2 (Aggregation) The aggregate elasticities of substitution satisfy

σ̄w
e = (1 − χ)σe + χ [ζwσs + (1 − ζw)m̄w

e σm + (1 − ζw − (1 − ζw)m̄w
e ) ϵ̄w

e ] , (24)

σ̄r
e = (1 − χ)σe + χ [ζrσs + (1 − ζr)m̄r

eσm + (1 − ζw − (1 − ζr)m̄r
e) ϵ̄r

e] , (25)

σ̄
q
s = (1 − ξq)σs + ξq [m̄q

s σm + (1 − m̄q
s)ϵ̄

q
s
]

, (26)

σ̄w
s = (1 − ξw)σs + ξw [m̄w

s σm + (1 − m̄w
s )ϵ̄

w
s ] , (27)

σ̄r
s = (1 − ξr)σs + ξr [m̄r

sσm + (1 − m̄r
s)ϵ̄

r
s] , (28)

where

χ ≡ ∑i(ki − k)2θi

k(1 − k)
, ζw ≡ ∑i(ki − k)(1 − ki)θisi

∑i(ki − k)(1 − ki)θi
, ζr ≡ ∑i(ki − k)kiθisi

∑i(ki − k)kiθi
,

m̄w
e ≡

∑i(ki − k)(ℓi − αw
p )θimi

∑i(ki − k)(ℓi − αw
p )θi

, m̄r
e ≡

∑i(ki − k)(κi − αr
p)θimi

∑i(ki − k)(κi − αr
p)θi

,

ξq ≡ ∑i ωi(si − s)2

s(1 − s)
, ξw ≡ −∑i ωi(si − s)(ℓi − ℓ)

sℓ
, ξr ≡ −∑i ωi(si − s)(κi − κ)

sκ
,

11Another implication from variable markup is that relative changes in factor share of cost are not equal
to relative changes in factor share of income. We discuss this issue in Section 3.3.
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ϵ̄w
e ≡

∑i((1 − ki)− (1 − k))[ℓi(1 − mi)− αw
p ]θiϵibi

∑i((1 − ki)− (1 − k))[ℓi(1 − mi)− αw
p ]θi

, ϵ̄r
e ≡

∑i(ki − k)(κi(1 − mi)− αr
p)θiϵibi

∑i(ki − k)(κi(1 − mi)− αr
p)θi

m̄q
s ≡

∑i(si − s)(si − α
q
p)ωimi

∑i(si − s)(si − α
q
p)ωi

, m̄w
s ≡

∑i(si − s)(ℓi − αw
p )ωimi

∑i(si − s)(ℓi − αw
p )ωi

, m̄r
s ≡

∑i(si − s)(κi − αr
p)ωimi

∑i(si − s)(κi − αr
p)ωi

ϵ̄
q
s ≡

∑i(si − s)(1 − mi)(si − α
q
p)ωiϵibi

∑i(si − s)(1 − mi)(si − α
q
p)ωi

, ϵ̄w
s ≡

∑i(si − s)(1 − mi)(ℓi − αw
p )ωiϵibi

∑i(si − s)(1 − mi)(ℓi − αw
p )ωi

,

ϵ̄r
s ≡

∑i(si − s)(1 − mi)(κi − αr
p)ωiϵibi

∑i(si − s)(1 − mi)(κi − αr
p)ωi

, bi(x) ≡ 1
1 − µ′(x)x/µ(x)

(
=

d ln pi

d ln mci

)
αw

p ≡ ∑i piYi(1 − ϵi)bi(1 − mi)ℓi

∑i piYi(1 − ϵi)bi(1 − mi)
, αr

p ≡ ∑i piYi(1 − ϵi)bi(1 − mi)κi

∑i piYi(1 − ϵi)bi(1 − mi)
,

α
q
p ≡ ∑i piYi(1 − ϵi)bi(1 − mi)si

∑i piYi(1 − ϵi)bi(1 − mi)

Proof In Appendix A.

Proposition 2 is our main theoretical result. The aggregate elasticity of substi-

tution is a weighted average of the micro elasticity of substitution and those cross-

sectional moments that govern between-firm reallocation. The weights themselves

are moments of the joint distribution of factor shares and markups across firms.

The aggregate elasticities of substitution between labor and equipment, σ̄w
e and σ̄r

e

(with respect to wage and equipment price, respectively), for example, are weighted

averages of the micro elasticities σe, σs, σm, and ϵ̄, with ϵ̄ being the weighted average

of the demand elasticity across firms. The weight χ in equations (24) and (25) is

proportional to the variance of equipment share of labor and equipment expenditures

ki across firms. Intuitively, when ki’s are more dispersed, reallocation across firms

becomes more important, putting more weights on the demand elasticity that governs

the reallocation. If all firms had the same equipment intensity ki, they will adjust the

factor expenditure ratios by the same proportion, and the aggregate elasticity would

be the same as the micro or within-firm elasticity.12 In these equations, ϵ̄w
e and ϵ̄r

e are

weighted averages of ϵibi across firms, where bi is the responsiveness of firm i’s price

to a change in its marginal cost (bi ≡ d ln pi/d ln mci)—a measure of pass-through. The

reallocation depends on how elastic a firm’s demand is (ϵi) and how much markup

changes when the marginal cost changes (bi).

We now discuss the aggregate elasticities of substitution between software and

the labor-equipment bundle, shown in equations (26)–(28). Again, the change in the

12In equations (24) and (25), the between-firm reallocation depends on σs as well as ϵ̄. For these elastic-
ities between labor and equipment, what matters for reallocation is firm i’s share of the aggregate labor-
equipment bundle, which can be obtained from its share of the aggregate non-material cost and the distri-
bution of software share of non-material cost (i.e., θi = ωi(1 − si)/(1 − s)). This is why σs appears.
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software share of non-material cost depends on which factor price changes (software

price q, wage w, or equipment price r).

Suppose that the price of equipment goes down. Then the price of the equipment-

labor composite goes down, causing firms to substitute away from software if the

micro elasticity σs is greater than one. The magnitude of the decline in the bundle

price depends on how intensively a firm uses equipment, with the within-firm substi-

tution being more prominent in firms with high κi (equipment share of non-material

cost). It follows that the substitution away from software in the aggregate in response

to a lower equipment price is larger when high κi firms, who become larger, tend to

have a lower si (software share of non-material cost). This is why ξr is proportional

to the minus of the covariance between κi and si. Again, a large κi does not neces-

sarily imply a small si because we have three inputs and we do not restrict the factor

share distribution. If the covariance between κi and si were positive, the reallocation

responding to a lower equipment price will counteract the substitution away from

software within firms.

Following the same logic, ξw in equation (27) is proportional to the minus of the

covariance between ℓi (labor share of non-material cost) and si (software share of non-

material cost).

Lastly, the change in software share in response to a change in software price in

equation (26) depends more on between-firm reallocation when si’s are more dis-

persed (ξq is proportional to the variance of si). Given the dispersion ξq, the real-

location is smaller (i.e., lower ϵ̄
q
s ) when a firm with higher software share (si) faces a

less elastic demand (smaller ϵi or higher µi) or a less responsive markup (lower bi).

3.3 Changes in the Aggregate Markup

When factor prices change, a firm adjusts its output price accordingly. Under the

Kimball aggregator in equation (6), the magnitude of output price adjustment differs

across firms, and as a result the aggregate markup changes. The following proposi-

tion summarizes how the aggregate markup changes in response to changes in factor

prices.

Proposition 3 (Aggregate markup) The change in aggregate markup in response to factor

price changes is respectively given by

σ̄w
µ − 1 ≡ d ln µ

ℓ̃d ln w
= (1 − ηw)(b̄w − 1) + ηw(ϵ̄w

µ − 1) + (ιw − ηw)(σm − 1) , (29)

σ̄r
µ − 1 ≡ d ln µ

κ̃d ln r
= (1 − ηr)(b̄r − 1) + ηr(ϵ̄r

µ − 1) + (ιr − ηr)(σm − 1) , (30)
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σ̄
q
µ − 1 ≡ d ln µ

s̃d ln q
= (1 − ηq)(b̄q − 1) + ηq(ϵ̄

q
µ − 1) + (ιq − ηq)(σm − 1) , (31)

where

µ ≡ ∑
i

ωiµi, ℓ̃ ≡ ∑
i

ωi ℓ̃i, κ̃ ≡ ∑
i

ωiκ̃i, s̃ ≡ ∑
i

ωi s̃i,

ℓ̃i ≡ (1 − mi)ℓi + miα
w
p , κ̃i ≡ (1 − mi)κi + miα

r
p, s̃i ≡ (1 − mi)si + miα

q
p,

b̄w ≡ ∑i µi ℓ̃iωibi

∑i µi ℓ̃iωi
, b̄r ≡ ∑i µiκ̃iωibi

∑i µiκ̃iωi
, b̄q ≡ ∑i µi s̃iωibi

∑i µi s̃iωi
,

ηw ≡ −∑i(µi − µ)(ℓ̃i − ℓ̃)ωi

ℓ̃µ
, ιw ≡ −∑i(µi − µ)(ℓi − ℓ)ωi

ℓ̃µ
,

ϵ̄w
µ ≡

∑i(µi − µ)(ℓ̃i − αw
p )ωiϵibi

∑i(µi − µ)(ℓ̃i − αw
p )ωi

ηr ≡ −∑i(µi − µ)(κ̃i − κ̃)ωi

κ̃µ
, ιr ≡ −∑i(µi − µ)(κi − κ)ωi

κ̃µ
,

ϵ̄r
µ ≡

∑i(µi − µ)(κ̃i − αr
p)ωiϵibi

∑i(µi − µ)(κ̃i − αr
p)ωi

ηq ≡ −∑i(µi − µ)(s̃i − s̃)ωi

s̃µ
, ιq ≡ −∑i(µi − µ)(si − s)ωi

s̃µ
,

ϵ̄
q
µ ≡ ∑i(µi − µ)(s̃i − α

q
p)ωiϵibi

∑i(µi − µ)(s̃i − α
q
p)ωi

Proof In Appendix A.

Similar to the aggregate elasticities of substitution between production factors, a

change in aggregate markup can be represented by a weighted sum of within-firm

changes and between-firm changes. That is, a change in aggregate markup depends

not only on how each firm adjusts its markup, but also on the reallocation of pro-

duction activity across firms. Consider a fall in software price (d ln q < 0) as an

example. For each firm, a fall in software price reduces its marginal cost accord-

ing to d ln mci/d ln q = si(1 − mi) + miα
q
p, where si(1 − mi) is the share of software

expenditure relative to total cost and α
q
p is a share of software contents in materials

(Shephard’s lemma). As the responsiveness of a firm’s price to its marginal cost (or

pass-through) is denoted by bi ≡ d ln pi/d ln mci, the within-firm markup change is

−(bi − 1)[si(1 − mi) + miα
q
p].13 The first term in the right-hand side of equation (31),

b̄q − 1, captures a weighted average of these within-firm adjustments across firms.

Now consider the reallocation across firms, or the between-firm change. When

software price falls (d ln q < 0), the reallocation makes aggregate markup increase if

13For example, if bi < 1 as in Klenow and Willis (2016), firms increase their markup in response to the
fall in software price.
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ηq < 0 in equation (31). That is, the reallocation raises the aggregate markup when

software shares and markups are positively correlated in the data (see the definition

of ηq in the second-to-last line of Proposition 3), because software-intensive firms’

weights rise with a fall in software price.

The degree of reallocation ϵ̄
q
µ in equation (31) is determined by the weighted aver-

age of the demand elasticity ϵi and the pass-through bi across firms—see the last equa-

tion of Proposition 3. The product ϵibi determines how firm i’s market share changes

in response to the change in software price. The weights are larger for software-

intensive firms, since the marginal cost change is proportional to firms’ software share

si. Intuitively, when firms with higher software shares adjust their size more, there is

more reallocation across firms in response to a fall in software price.

Note that the weight is firm i’s share of the aggregate value added (ωi) rather than

its share of the total cost (γi) when aggregating markup. A change in total cost share

is not exactly proportional to a change in value added share, except when σm = 1. As

a result, the adjustment term (ιq − ηq)(σm − 1) appears at the end of the equation (31).

How factor shares correlate with markup is an empirical question. When a factor

share is positively correlated with markup, its covariance is positive and the corre-

sponding η is negative. The degrees of reallocation ϵ̄µ’s themselves can reinforce or

counteract the within-firm markup changes depending on the joint distribution of

markup and factor shares in cost.

The aggregate labor income share is the aggregate labor cost share in aggregate

non-material cost divided by the aggregate markup, ℓ/µ. To see this, let firm i’s non-

material cost Ci ≡ wLi + rKi + qSi and aggregate non-material cost C ≡ wL+ rK + qS.

Then,

LS =
∑i wLi

∑i piYi
=

∑ wLi/Ci × Ci/C
∑ piYi/Ci × Ci/C

=
∑ ℓiωi

∑ µiωi
=

ℓ

µ
. (32)

Since a change in software price affects µ as well as ℓ, we need to consider the markup

change in equation (31) together with the factor substitution in Proposition 2 when

calculating the effect of software-embodied technological change on the aggregate

labor income share.

4 Estimation

The micro-level elasticity of substitution can be identified from the relationship be-

tween factor income shares and factor prices (Proposition 1). However, estimating

this relationship is challenging because of the simultaneous movements in factor in-

puts and prices driven by the factor bias of technological change, which is typically
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not observable. To address this challenge, one needs to either control for factor-biased

technological changes or employ instruments for factor price changes that are orthog-

onal to factor-biased technological changes.

In the macro literature, some researchers dealt with this issue by assuming a

specific form of factor-biased technological change, such as a log-linear time trend

(Antras, 2004; Herrendorf et al., 2015, among others). However, it is unclear whether

the assumed functional form adequately controls for all the factor bias. With more

disaggregated data, more reasonable instruments become available, such as local

labor market impacts of national changes in employment (Raval, 2019; Oberfield and

Raval, 2021; Lashkari et al., 2023), amenities (Oberfield and Raval, 2021), and tariffs

(de Souza and Li, 2023). However, the estimated elasticity from micro-level data will

generally differ from the elasticity at the macro level.

We first estimate the micro-level elasticities of substitution σe and σs using micro-

level data and instruments for relative factor prices. We then aggregate the micro-level

elasticities into the macro-level elasticities of substitution, using our theoretical results

and the data on the distribution of factor income shares.

We estimate the micro-level elasticities in two different ways, each utilizing a dis-

tinct data set with its own strengths and weaknesses. The first approach uses the

data on manufacturing establishments from the Korean Economic Census of 2015, en-

compassing all manufacturing establishments with at least one employee. The census

provides information on the geographic location of each establishment, allowing us to

use instruments with regional variations. The limitation is that it is one cross-section

covering only the manufacturing sector.

The second approach uses firm-level panel data, KISDATA. It covers all sectors,

but one limitation is that it only covers firms meeting specific criteria for external

auditing. As it lacks information on firms’ geographic location, we use instruments

with industrial variations over time.

4.1 Cross-sectional Estimates of Micro-level Elasticities

We begin by estimating the micro-level elasticity of substitution between labor and

equipment versus software, using the cross-sectional variation in the Korean Eco-

nomic Census data.

Estimation Strategy In estimating the relationship between relative expenditures

on factors and relative factor prices, we follow Oberfield and Raval (2021), with wage

differences across regions as our main explanatory variable. Local wages are ob-
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tained from the Regional Employment Survey. The Regional Employment Survey

is a household-level survey reporting workers’ salaries, demographics, educational

attainment, and experience. We estimate a residual wage for each person in the man-

ufacturing sector, controlling for education, demographics, and experience, and then

aggregate it up to the region level.14.

We run the following regression across firms:

log
rKi

wLi
= βe log wr + γeXi + ϵe,i, (33)

1
1 − ki

log
qSi

wLi + rKi
= βs log wr + γsXi + ϵs,i, (34)

where i indexes firms, wr is the residual wage in region r that firm i belongs to, and

X is a set of control variables including three-digit industry fixed effects, firm age,

and multi-establishment status. Note that βe = σe − 1 and βs = σs − 1. This specifi-

cation assumes that all firms face the same cost of capital but different wages across

regions.15

When using the regional wage variations, endogeneity is an issue if local wages

are correlated with unobserved productivity that is not factor neutral. We follow

Oberfield and Raval (2021) and Raval (2019) and use Bartik (1991) style shift-share

instrument to address this concern. Specifically, we construct a shift-share variable

that captures changes in local demand for labor in the service sector and use it as

an instrument for the supply of labor for manufacturing plants. The instrument is

Zr = ∑i∈Ns
ωr,i,0 log(Li,t/Li,0), where Ns is the set of industries in the service sector,

ωr,i,0 is the service industry i’s share of employment in region r at time 0, and Li,t is

the nationwide employment of industry i in time t. The employment growth is from

2010 to 2015. Because the instrument covers only service industries, we interpret this

as a change in the labor supply for the manufacturing firms in the same region com-

peting for the same pool of workers, uncorrelated with the factor-biased productivity

of manufacturing firms.16

One may wonder about the plausibility of the assumption that firms in the ser-

vice sector and those in the manufacturing sector hire from the same worker pool in

14The unit of a region in our analysis is Si-Gun-Gu, which is an administrative division of South Korea.
The average population size of Si-Gun-Gu is 319,200, which is a bit smaller than the average population
size of a commuting zone in the US, 443,500.

15This is one reason why we focus on equipment rather than structure and equipment in the baseline
estimation. It is unlikely that firms located in different regions face the same price of structure.

16Oberfield and Raval (2021) employs a measure of local amenities based on climate and geography as
an alternative instrument. However, we cannot do the same because measures of climate and geography
do not have enough variations in a small country like Korea. Oberfield and Raval (2021) reports that the
Bartik instrument and local amenities result in similar estimates of substitution elasticity. In section 4.2, we
use a different data set and a different instrumental variable.
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a region. Checking for the contribution of each service industry using the Rotemberg

weights as in Goldsmith-Pinkham et al. (2020), we find that the research and devel-

opment industry and the business support service industry account for 93 percent of

overall weights and 80 percent of positive weights (Appendix B.4.1). Since it is likely

that workers in these two industries can switch to the manufacturing sector more eas-

ily than workers in other service industries (for example, health care or education),

we view the assumption of the common labor supply pool to be plausible.

As robustness checks, we also estimated a two-stage least squares (TSLS) regres-

sion and a limited-information maximum likelihood (LIML) with each industry share

as instruments (Goldsmith-Pinkham et al., 2020). In addition, we estimated using an

alternative instrument based on industry wage premia suggested by Beaudry et al.

(2012).17 Lastly, regarding the inference of estimation with a shift-share instrument,

Borusyak et al. (2021) suggests a shock (industry) level regression, when initial shares

are endogenous and identification comes from exogenous shocks. While it is unclear

that we should suspect the initial shares to be endogenous, we do a shock-level shift-

share IV (SSIV) estimation as a robustness check.

Results Table 2 reports the estimated micro-level elasticities of substitution be-

tween labor and equipment (σe) and between labor and software (σs). We report the

OLS estimates in columns 1, and IV estimates in columns 2 to 7. The benchmark

result is the estimation with the shift-share instrument in column 2. The elasticity of

substitution between labor and equipment mostly lies between 0.3 and 0.7, implying

complementarity between labor and equipment. These estimates are in line with

those in previous studies of the US data, such as Antras (2004), Herrendorf et al.

(2015), Knoblach et al. (2020), Oberfield and Raval (2021), and Raval (2019).

Our novel finding is that the elasticity of substitution between labor and software

(σs) is greater than one, statistically significantly so in the majority of the specifica-

tions, including the benchmark (column 2). It implies that software substitutes for la-

bor and that labor income shares would decrease within firms in response to software-

embodied technological change.18

17Formally, the instrument is ZBGS
r = ∑i∈Ns ω̂r,i,t(νi,t − νi,0), where Ns is the set of industries in the service

sector, ω̂r,i,t is the predicted share of region r’s employment in industry i, and νi,t is the wage premium in
industry i in year t. The share ω̂r,i,t is predicted based on national employment changes as above, and the
wage premia νi,t are fixed effects from a regression of individual wages on industry dummies indexed by i.

18The standard errors are larger for the shock-level regressions (columns 6 and 7). This specification can
only utilize the variation across 34 two-digit service industries, with even smaller effective sample size. In a
shock-level regression, the effective sample size is the inverse of the Herfindahl index of average industrial
employment shares across regions, calculated as 1/ ∑n s2

n, where sn = ∑r sr,n represents the employment
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OLS Bartik BGS TSLS LIML SSIV1 SSIV2

Equipment (σe) 0.663 0.600 0.580 0.385 0.375 0.600 -0.164
(0.084) (0.153) (0.222) (0.070) (0.098) (1.051) (0.815)

Software (σs) 1.128 1.620 2.395 1.510 1.519 1.620 2.736
(0.118) (0.230) (0.357) (0.106) (0.134) (0.879) (0.928)

Table 2: Micro-Level Capital-Labor Substitution: Cross-Sectional Estimates

Column 1 is the OLS estimate. Columns 2 and 3 are IV regressions using shift-share instru-
ments according to Bartik (1991) and Beaudry et al. (2012), respectively. Columns 4 and 5 are
IV regression with two-stage least squares (TSLS) and limited-information maximum like-
lihood (LIML) with each industry share as an instrument. Columns 6 and 7 are the shock
(industry) level shift-share IV regressions suggested by Borusyak et al. (2021) with complete
shares and incomplete shares, respectively. Standard errors are clustered at the level of 3-digit
industry and region for columns 1 to 5. Robust standard errors are reported for columns 6
and 7.

We next do a battery of robustness checks. We first estimate using only the es-

tablishments that already existed in 2009 or before (’Old est.’ in Table 3), since our

instrument has national services employment growth between 2010 and 2015. Sec-

ond, in the Economic Census, many firms report that they do not hold software assets

(Si = 0), which might be measurement errors. We restrict the sample to firms with

non-zero software assets (‘Positive obs.’). Third, we consider an alternative order-

ing of nested CES structure that bundles labor and software first instead of labor and

equipment (‘Alt. order’).19 Fourth, we consider an estimation with tangible (equip-

ment and structure) and intangible capital (software and R&D). Finally, we run the

same regression using only standalone establishments, dropping multi-establishment

firms (‘Standalone’). The results, all using our benchmark Bartik instrument, are in

Table 3, which shows σe < 1 and σs > 1 in all cases.

4.2 Panel Estimates of Micro-level Elasticities

In an effort to assess the broader validity of our findings, we estimate the micro-

level elasticities of substitution using a different data set and a different identification

strategy. To be specific, we utilize firm-level panel data (KISDATA) and the variations

in minimum wages as an instrument for labor cost.

share of industry n in region r (Borusyak et al., 2021). Intuitively, when regional employment is dominated
by a few industries, there would not be much variation at the shock (industry) level. The effective sample
size in our data is only 12.7. Detailed discussion of the shock-level regression is in Appendix B.4.1.

19Formally, Vi = [{αL
i (ALLi)

σs−1
σs + αS

i (ASSi)
σs−1

σs }
σs(σe−1)
(σs−1)σe + αK

i (AKKi)
σe−1

σe ]
σe

σe−1 , instead of equation (4).
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Old est. Positive obs. Alt. order Tan/Intan Standalone

Equipment (σe) 0.651 0.674 0.597 0.736 0.595
(0.162) (0.318) (0.154) (0.165) (0.300)

Software (σs) 1.937 1.438 1.169 2.716 1.502
(0.279) (0.404) (0.198) (0.429) (0.387)

Table 3: Robustness Checks for Micro-Level Capital-Labor Substitution

All columns are estimates from IV regressions using our Bartik (1991) instrument. Column 1
only uses establishments established before 2010, and column 2 uses data with strictly posi-
tive Si only. Column 3 is for the alternative CES ordering of the production function. Column
4 uses total tangible vs. intangible capital, instead of equipment vs. software. Column 5 only
includes standalone establishments. Standard errors are clustered at the level of three-digit
industry and region.

Estimation Strategy To identify the substitution elasticities with panel data, we

follow the approach of Chirinko and Mallick (2017), focusing on relatively longer-run

variations in factor shares and prices. We first compute three-year moving averages

of firms’ factor shares and factor prices.20 We then take differences between adjacent

years to remove time-invariant heterogeneity across firms. The regression equations

based on Proposition 1 are as follows.

∆ log(k∗i,t/(1 − k∗i,t)) = α + (σe − 1)∆ log x∗1,i,t + β∆ log z∗i,t + γt + ε i,t (35)

∆ log(s∗i,t/(1 − s∗i,t)) = α + (σs − 1)∆ log x∗2,i,t + β∆ log z∗i,t + γt + ε i,t (36)

With i indexing firms and j indexing industries, ki,t is rj,tKi,t/(wi,tLi,t), and si,t is

qj,tSi,t/(Wi,tLi,t + rj,tKi,t). Also, log x1,i,t is log wi,t/rj,t, log x2,i,t is (1 − ki,t) log wi,t +

ki,t log rj,t − log qj,t, log zi,t is log sales, and γt is year dummies. For any variable, the

asterisk denotes its three-year moving average.21

To address endogeneity concerns, we use changes in the national minimum wage

as an instrument for variations in labor cost. The minimum wage is a particularly

useful instrumental variable for Korea during our sample period, because the mini-

mum wage increased drastically and unexpectedly. In 2017, the then president was

impeached for a reason unrelated with the state of the economy. In the presidential

election held to fill the vacancy two months later, the liberal opposition party candi-

20Chirinko and Mallick (2017) applied a low-pass filter to the industry-level variables. We are unable to
apply the low-pass filter, because our firm-level data is an unbalanced panel.

21To obtain the firm-level wage wi,t, we divide the labor compensation by the number of employees. For
equipment and software rental rates (rj,t and qj,t) at the industry level, we use the following imputation,
because the National Accounts of Korea does not disaggregate industry-level capital price by type of capital.
The rental rate of equipment in industry j is rj,t = Rj,t × (rt/Rt), where Rj,t is the rental rate of total capital
in industry j in year t, Rt is the rental rate of total capital in the aggregate, and rt is the rental rate of
equipment in the aggregate. For the rental rate of software in industry j, replace the lower case r’s with q’s.
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date won. The new administration pursued a distinctly pro-labor policy in the labor

market, including substantial raises of the minimum wage. It rose by 16.4 percent in

2018 and 10.9 percent in 2019 in nominal terms, when the inflation rate was less than

two percent.

Since Korea sets only the national minimum wage, the minimum wage does not

vary across industries. To generate industrial variations, we compute two variables

for each industry in each year t: (i) the share of workers between the minimum wage

in year t and the minimum wage in year t + 1, and (ii) the share of workers reporting

hourly wages below the minimum wage in year t. We then run instrumental variable

regressions, using the current and one-year lagged values of these two variables as

instruments for the relative factor prices (∆ log xi,t). In an alternative specification, we

control for firms’ sales to capture changes in market demand.

Results Table 4 reports the estimation results. The elasticity of substitution be-

tween labor and equipment ranges from 0.603 to 0.627 across different specifications

(columns 1 to 2), indicating complementarity between labor and equipment. On the

other hand, the substitution elasticity between labor and software is invariably greater

than one, confirming our previous findings from cross-sectional estimations. The pat-

terns remain robust, when (i) we reverse the ordering of factors in the production

function as in footnote 19 (‘Alt. order’), (ii) we use tangible and intangible assets in-

stead of equipment and software (‘Tan/Intan’), and (iii) we replace firm-level wages

with the industry average of hourly male wages controlling for education and expe-

rience (‘Residual wage’).

Baseline Alt.
order

Tan /
Intan

Residual
wage

Equipment (σe) 0.603 0.627 0.627 0.047 0.396
(0.099) (0.097) (0.100) (0.079) (0.089)

Software (σs) 1.482 1.479 1.590 1.672 1.798
(0.259) (0.259) (0.386) (0.177) (0.478)

sales control ✓ ✓ ✓ ✓

Table 4: Micro-Level Capital-Labor Substitution: Panel Estimates

All columns are estimates from two-stage least squared regressions using minimum wage
instruments. Specifically, instrumental variables are the current and one-year lagged values
of the share of workers between the minimum wage in year t and the minimum wage at
time t + 1 by industry and the share of workers reported wage below the minimum wage by
industry. Standard errors are clustered at the firm level.
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From the micro-level estimates derived from distinct datasets and identification

strategies, we conclude that software substitutes for labor, whereas equipment com-

plements labor. This difference in the elasticity of substitution suggests that software

may play a more crucial role in the decline of the aggregate labor share.

4.3 Aggregation

We now compute the aggregate elasticities of substitution, which determine the im-

pact of factor prices on aggregate factor income shares and markup. Applying the

theory in Section 3, we derive the aggregate elasticities σ̄e and σ̄s as in Proposition

2, combining our estimates of the micro-level elasticities of substitution and the mo-

ments from the joint distribution of factor shares and markups in the microdata.

Data and Estimated Parameters For our baseline aggregation result, we use the

firm-level panel KISDATA from 2003 to 2018. To compute the reallocation parameters,

we need to estimate markups (µi) and price pass-through (bi) at the firm level. A firm’s

markup is given by the ratio of revenue to expenditure on a variable input, multiplied

by the output elasticity with respect to the factor. For example, with labor as a variable

input, the markup µi of firm i is

µi =
piyi

wLi
× αi , (37)

where piyi is revenue and α is the output elasticity with respect to labor. Because

the output elasticity is not directly observed in the data, the literature suggests sev-

eral methods of estimating markup (Baqaee and Farhi, 2019; De Loecker et al., 2020;

Edmond et al., 2018, among others). We use the ratio of revenue to total cost as

our baseline estimate, inferring α from the firm’s cost minimization condition, αi =

wLi/(wLi + rKi + qSi + υMi). Further details on the cases with alternative markup

measures are in Appendix B.2.3.

From the estimated markups, we compute each firm’s price pass-through (bi) us-

ing the relationship between markup and pass-through given by the demand aggre-

gator in Klenow and Willis (2016):

H(Yi/Y) = 1 + (σ − 1) exp(1/ν)ν
σ
ν −1

[
Γ
(

σ

ν
,

1
ν

)
− Γ

(
σ

ν
,
(Yi/Y)

ν
σ

ν

)]
.

With this functional form, ϵ(x) = − h′(x)x
h(x) = σh(x)−

ν
σ and hence ϵ′(x)x

ϵ(x) = − ν
σ

h′(x)x
h(x) =

ν
σ ϵ(x). Since µ = ϵ

ϵ−1 , we obtain the following relationship between the markup µi
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and the price pass-through bi:

bi =
1

1 − µ′x
µ

=
1

1 + µi
ν
σ

. (38)

The value of the super-elasticity ν/σ is set to 0.11, from the empirical relationship

between firms’ sales shares and markups, as in Edmond et al. (2018).

From the various micro-level elasticity estimates in Sections 4.1 and 4.2, we select

σs = 1.6 and σe = 0.6, the Bartik instrument estimates in Table 2, which are not much

different from other estimates. We also need to set the elasticity of substitution be-

tween value added and material input (σm). We estimate σm using our cross-sectional

approach (Section 4.1), which results in σm = 1.22 With σm = 1, the adjustment terms

reflecting the discrepancy between value-added and sales disappear (σm − 1 = 0) in

Propositions 2 and 3.23

Lastly, we take five-year moving averages to smooth the reallocation parameters.

Details on the construction of the reallocation parameters are in Appendix B.

Results In Table 5, we report the macro-level elasticities (σ̄, first column) and de-

compose the total change in relative factor income shares (σ̄ − 1, second column) into

the within-firm change (σ − 1, third column) and the remaining part that is due to

reallocation (σ̄ − σ, fourth column). For example, in response to a one percent in-

crease in labor cost, the expenditure on equipment relative to labor (rK/wL) changes

by σe − 1 percent within firms and σ̄w
e − σe percent due to reallocation, with a total

change of σ̄w
e − 1 percent in the aggregate. As shown in Section 3.2.2, this total change

in response to a change in wage is different from the one in response to a change in

the cost of equipment, σ̄r
e − 1. In the last two columns of Table 5, we report the dis-

tributional moments that determine the magnitude of reallocation. We hold fixed the

micro-level elasticities over time, but the macro-level elasticities do vary over time

because the joint distribution of factor shares and markups evolves over time. In the

table, we show the values for 2005 and 2015. The time series are shown in Figure 5,

but we do not find a clear time trend in the macro-level elasticities.

We first note that the macro-level elasticities of substitution between equipment

and labor are larger than the micro-level elasticity (σ̄e > σe). In fact, in response to

22The estimation equation is (1/ℓi) log mi/(1 − mi) = βm log wr + γmX + ϵm,i, which implies σm =

β̂m + 1. The OLS and the IV estimation with the shift-share instrument give σm estimates of 0.8 and 1.3,
respectively. This is similar to what Oberfield and Raval (2021) report in their analysis of US data.

23As Castro-Vincenzi and Kleinman (2023) show, within a firm, a rise in material costs reduces its labor
share when labor and material input are complements (σm < 1) and markups are positive. In our analysis,
σm affects the labor share through reallocation across firms as well. If σm < 1, the impact of capital-
embodied technological change is attenuated, resulting in less reallocation.
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changes in labor costs, equipment even substitutes for labor (σ̄w
e > 1) in the aggregate,

even though the micro-level elasticity is well below one. However, with respect to

changes in the price of equipment, equipment mostly complements labor (σ̄r
e < 1).

This discrepancy results from the difference in the magnitude of reallocation with

respect to the two factor prices (ϵ̄w
e > ϵ̄r

e). It reflects the fact that firms facing higher

demand elasticities tend to have more extreme labor expenditure shares (either very

high or very low) in the data (Proposition 2).

Reallocation plays a relatively minor role in the macro-level elasticity of substitu-

tion between software and labor (σ̄s). Accordingly, this macro-level elasticity remains

close to the micro-level elasticity of substitution between software and labor, no mat-

ter which factor price changes. Both the weight on the reallocation and the magnitude

of the reallocation are smaller for the software-labor elasticity than for the equipment-

labor elasticity (ξ < χ and ϵ̄s < ϵ̄e). The relatively small ϵ̄
q
s implies that firms that use

Year
Elasticity

(σ̄)
Total

Change
Within
Change

Re-
allocation

Distributional
Moments

Factor substitution (eqp.) σ̄e − 1 σe − 1 σ̄e − σe χ ϵ̄e

σ̄w
e 2005 1.173 0.173 -0.400 0.573 0.289 4.560

2015 1.159 0.159 -0.400 0.559 0.334 3.707

σ̄r
e 2005 0.834 -0.166 -0.400 0.234 0.289 1.925

2015 1.036 0.036 -0.400 0.436 0.334 2.925

Factor substitution (sft.) σ̄s − 1 σs − 1 σ̄s − σs ξ ϵ̄s

σ̄
q
s 2005 1.561 0.561 0.600 -0.039 0.068 1.048

2015 1.599 0.599 0.600 -0.001 0.033 2.295

σ̄r
s 2005 1.979 0.979 0.600 0.379 -0.526 0.880

2015 1.434 0.434 0.600 -0.166 0.246 0.846

σ̄w
s 2005 1.468 0.468 0.600 -0.132 -0.007 0.920

2015 1.600 0.600 0.600 0.000 0.513 0.326

Changes in markup σ̄µ − 1 b̄ − 1 σ̄µ − b̄ η ϵ̄µ

σ̄
q
µ 2005 0.503 -0.497 -0.423 -0.074 0.198 0.637

2015 0.677 -0.323 -0.245 -0.078 -0.003 1.430

σ̄r
µ 2005 0.699 -0.301 -0.240 -0.062 -0.043 2.199

2015 0.690 -0.310 -0.210 -0.100 0.017 -5.228

σ̄w
µ 2005 0.791 -0.209 -0.223 0.014 0.013 1.831

2015 0.804 -0.196 -0.217 0.021 -0.003 -7.319

Table 5: Macro-level Elasticities and Distributional Moments
The macro-level elasticities are based on Propositions 2 and 3 and the distributional moments
from the joint distribution of ki, ℓi, si, κi, mi, θi, ωi, γi, ϵi, and bi in KISDATA. The micro-level
elasticities are the Bartik IV estimates in Table 2.
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software intensively does not respond much to the change in the price of software.

This is because such software-intensive firms tend to have high markups (and low

demand elasticities) in the data.

In fact, reallocation can even counteract the substitution between labor and soft-

ware within firms. Normally, for example, an increase in the labor cost reduces the

market share of labor-intensive firms, further reducing the aggregate labor share.

However, when labor-intensive firms also have relatively high software shares (ξw <

0) or when the sales of such labor-intensive firms with high software intensities re-

spond sensitively to the shock (ϵ̄w
s < 1), reallocation can result in a lower aggregate

software share. As discussed in Section 3.2.2, such an outcome is not possible when

there are only two factors.

Even if reallocation had a small effect in terms of factor substitution, it could

still have a sizeable effect on factor shares through endogenous changes in markup.

Changes in factor prices affect not only within-firm markup but also the aggregate

markup through reallocation, which in turn affect the aggregate income shares of all

factors.

The bottom panel of Table 5 shows that the aggregate markup decreases (increases)

when factor prices increase (decrease), σ̄µ − 1 < 0. Because of the incomplete price

pass-through in our specification (bi < 1), on average, within-firm markup will de-

crease in response to higher costs (b̄ < 1, third column). Reallocation across firms can

either reinforce or counteract this within-firm markup change, depending on the joint
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Fig. 5: Macro-level Elasticities

The dotted lines in panels (a) and (b) are the micro-level elasticity estimates. The macro-
level elasticities are based on Propositions 2 and 3 and the distributional moments from the
joint distribution of ki, ℓi, si, κi, mi, θi, ωi, γi, ϵi, and bi in KISDATA.
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distribution of factor shares and markups across firms in the data. The weights (η,

fifth column) are proportional to the correlation between factor shares and markups.

In our data, markups are not significantly correlated with labor shares or equipment

shares. On the other hand, they are positively correlated with software shares so that

reallocation reinforces the effect of the within-firm markup changes in response to

software price changes. As a result, of the three factor prices, the software price has

the largest effect on the aggregate markup.

5 Macro-level Elasticities and Aggregate Labor
Share

The estimated elasticities of substitution in Section 4 suggest that it is software, not

equipment, whose declining price contributed more to the fall in the aggregate labor

share. We now quantify the respective contribution. Proposition 4 summarizes the

impact of capital-embodied (software and equipment) technological changes on the

aggregate labor share.24

Proposition 4 (Change in the aggregate labor share) The impact of capital-embodied

technological changes on the aggregate labor share is given by:

LSt − LSt−1 = LSt ×
[
−
(

s̄t(σ̄
q
s,t − 1)− ¯̃st(σ̄

q
µ,t − 1)

)
ln

1/qt

1/qt−1

−
(

ēt(σ̄
r
e,t − 1)− ēt s̄t(σ̄

r
s,t − 1)− ¯̃κt(σ̄

r
µ,t − 1)

)
ln

1/rt

1/rt−1

]
, (39)

where x̄t ≡ xt+xt−1
2 .

Proof In Appendix A.

Given the aggregate elasticities in Table 5, equation (39) implies that software-

embodied technological change (d ln 1/q > 0) reduces the aggregate labor income

share through both factor substitution (σ̄q
s > 1) and markup changes (σ̄q

µ < 1). On the

other hand, equipment-embodied technological change (d ln 1/r) has countervailing

effects. In terms of factor substitution, it always increases the labor share within a firm

because equipment complements labor (σe < 1). However, reallocation may or may

not counteract the pattern of within-firm factor substitution (σ̄r
e ≷ 1). The responses

of markup invariably reduces the aggregate labor share (σ̄r
µ < 1).

24Our production function in effect assumes that other types of capital have a unitary elasticity of sub-
stitution with respect to labor and hence do not affect the labor share. See proof of Proposition 4 for details.
Since the prices of equipment and software fell much more than those of other capital types in the data, our
results do not hinge on this assumption. Figure 2 supports this assumption.
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Data To implement the decomposition in equation (39), we construct the aggregate

labor income share LSt, aggregate equipment income share et, and aggregate software

income share st from the National Accounts as described in Section 2.25 Software

and equipment-embodied technological change is represented by five-year moving

averages of the inverse of the price of software and equipment investment relative

to consumption, as in Section 2. The decomposition starts in 1990, when Korea’s

aggregate labor income share started to decline in a sustained manner. As the cross-

sectional moments are available only after 2003, we impute the values between 1990

and 2002 from the 2003 values. We note that the aggregate elasticities do not have

clear time trends (Figure 5). Further details are in Appendix B.

Results Table 6 and Figure 6 report by how much capital-embodied technological

change affected the aggregate labor income share between 1990 and 2018 in Korea.

The aggregate labor share declined by 4.4 percentage points in the data.

Using the estimated macro-level elasticities and the software price time series, we

find that software-embodied technological change accounts for 2.9 p.p. or 66.9 percent

of the overall decline in the labor share (first column, top panel). Of the 2.9 p.p., 1.4

p.p. (second column) is due to factor substitution and the other 1.5 p.p. (fifth column)

is due to the rise in aggregate markup in response to the falling software price, a near-

even split.

The decline in the labor share through factor substitution is entirely (1.5 out of

1.4 p.p.) attributed to within-firm substitution of software for labor (governed by the

micro-level elasticity σs) and not at all to reallocation across firms (third and fourth

columns). As for the markup increase in response to the falling software price, within-

firm and between-firm adjustments play comparable roles (0.8 and 0.7 p.p. respec-

tively out of 1.5 p.p.). One may think that reallocation overall has a minor effect on

the decline of the labor share, but it should be noted that the within-firm markup

increase comes with a rise in market share, which entails reallocation. In fact, as in

Kehrig and Vincent (2021), reallocation can be broken into three components: (i) large

firms reducing their labor share, (ii) firms with a low labor share growing rapidly, and

(iii) firms simultaneously gaining market shares and decreasing their labor shares.

Their study of the US manufacturing plants found that the decline in the aggregate

labor share was mostly driven by those plants that expanded rapidly while reducing

their labor share—that is, (iii) above. Our decomposition is different from theirs, but

25We use the same values for s̃ as for s and κ̃ as for κ. Formally, s̃ = ∑ ωi(si(1−mi) +miα
q
p) ≈ ∑ ωisi = s

and κ̃ = ∑ ωi(κi(1 − mi) + miα
r
p) ≈ ∑ ωiκi = κ.
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• Total change in labor share in the data: -0.044

• Effects of Software-embodied Technological Change (∆ ln 1/q)

Total
Factor Substitution Markup

Overall Within Between Overall Within Between

Changes -0.029 -0.014 -0.015 +0.001 -0.015 -0.008 -0.007
(% explained) (66.9) (31.9) (33.0) (-1.2) (35.0) (19.0) (16.1)

• Effects of Equipment-embodied Technological Change (∆ ln 1/r)

Total
Factor Substitution Markup

Overall Within Between Overall Within Between

Changes -0.004 +0.004 +0.014 -0.010 -0.009 -0.008 -0.001
(% explained) (10.2) (-9.5) (-32.8) (23.3) (19.8) (17.4) (2.3)

Table 6: Effects of Capital-Embodied Technological Change on the Labor Share

The decomposition is for the 1990–2018 period. The overall effect is calculated using the
macro-level elasticities (σ̄), and the within effect is computed using the micro-level elasticities
(σ). The between effect is the difference between the overall and the within effects. Percent
explained of the labor share decline in the data is in parentheses.

the importance of the within-firm factor substitution and the within-firm markup in-

crease in our result is consistent with firms increasing market shares while simultane-

ously reducing their labor shares. More important, our result suggests that software-

embodied technological change may well be the cause of the pattern of reallocation

observed both in the US data and in the Korean data.

The left panel of Figure 6 plots the cumulative impact of the fall in the software

price on the aggregate labor share through within/between factor substitution and

within/between markup increases.

The effect of equipment-embodied technological change is shown in the bottom

panel of Table 6. Using the estimated macro-level elasticities and the equipment price

time series, we obtain a 0.4 percentage point decrease in the labor share (or 10 percent

of the actual decrease) from equipment-embodied technological change. Behind this

small number are several conflicting forces. Within-firm substitution pushes up the

labor share by 1.4 p.p. (third column) because σe < 1, but the reallocation toward low

labor share firms goes against it, negating 1.0 (fourth column) of the 1.4 p.p. increase.

Factor substitution overall raises the labor share by 0.4 p.p. when the equipment

price falls. In addition, the falling equipment price raises markups and reduces the

labor share by 0.9 p.p. (fifth column), mostly through what happens within firms

(sixth column). In sum, because of the heterogeneous markups, equipment-embodied
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Fig. 6: Effects of Capital-Embodied Technological Change on the Labor Share

The decomposition is for the 1990–2018 period. The overall effect is calculated using the
macro-level elasticities (σ̄), and the within effect is computed using the micro-level elasticities
(σ). The between effect is the difference between the overall and the within effects. Percent
explained of the labor share decline in the data is in parentheses.

technological change contributes to a small reduction in the labor share, even though

equipment and labor are found to be complements at both the micro and the macro

levels.

Put together, software-embodied and equipment-embodied technological change

accounts for 77 percent of the decline in the aggregate labor share between 1990 and

2018 in Korea. Software-embodied technological change is the key driver (67 of the

77 percent), and variable markups are crucial for a comprehensive understanding of

the overall impact of capital-embodied technological change. Although not reported

here, when we simply lump together equipment and software as one capital bundle

in a two-factor production function, we find this capital bundle and labor are com-

plements: This simpler specification is a non-starter for thinking about the decline of

the labor share in the face of falling capital prices. Furthermore, even with software

and equipment as two separate factors of production, When we use the standard CES

aggregator with constant markup, software-embodied technological change accounts

for less than one-third of the decline in the aggregate labor share.

In Appendix C, we provide additional results as robustness checks. First, we

provide decomposition results using the aggregate elasticities and distributional mo-

ments from the manufacturing census data. Second, we consider alternative values of

pass-through (bi) based on the empirical relationship in Baqaee et al. (2023).26 In both

26Baqaee et al. (2023) suggest that the Klenow-Willis specification produces too little variation in price
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cases, we obtain qualitatively similar results: The equipment-labor substitution elas-

ticity is larger at the macro level than at the micro level (but still less than one), while

the macro-level software-labor substitution elasticity remains close to its micro-level

counterpart. In addition, the aggregate markup is much more responsive to software

prices than other factor prices.

6 Conclusion

In this paper, we establish that the capital-labor substitution elasticity is different

across types of capital. The equipment-labor substitution elasticity is less than one,

consistent with the micro-level findings in the literature, but the software-labor sub-

stitution elasticity is greater than one, a novel finding. This distinction is important

for understanding the decline of the aggregate labor income share over time.

Our focus on software connects well with (and nicely complements) the three lead-

ing explanations of the labor share decline. First, our results support the literature

arguing that technological change embodied in capital reduced the labor share since

the 1980s (Karabarbounis and Neiman, 2013). We clarify that it is software rather

than equipment that substitutes for labor, both at the micro and the macro levels.

Second, our results reinforce the findings of (Koh et al., 2020) that intangible capital

shares, rather than tangible capital shares, rose at the expense of labor shares in the

aggregate. We not only estimate the elasticities of substitution to quantify the role of

capital-embodied technological change, but also establish the importance of the het-

erogeneous, variable markups in pushing down the labor share as a result. In fact, the

effect of the rising markups is as large as the factor substitution itself. In other words,

comparing the factor income shares of labor and capital alone will underestimate the

true impact of software-embodied technological change by half. Third, the literature

has documented how reallocation across firms contributed to the decline of the aggre-

gate labor share (Autor et al., 2020; De Loecker et al., 2020; Kehrig and Vincent, 2021).

We find that firms with high software intensity generally have low labor shares and

high markups in the data. This means that software-embodied technological change

can be the causal force behind the reallocation toward firms with high markups and

low labor shares in the data, bringing down the aggregate labor income share.

The natural next step is to ask how such technological change affected different

workers differently and hence the overall income inequality. Because of the limited

scope of worker heterogeneity in our data, we were not able to assess how equipment

pass-through, potentially understating the magnitude of reallocation.
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and software interact with workers of different skill levels. As previously mentioned,

our calibration exercise using macro data in the spirit of Krusell et al. (2000) finds

that equipment complements both high-skill and low-skill workers, but complements

high-skill workers more. Software, on the other hand, substitutes for both high-skill

and low-skill workers, but substitutes for low-skill workers more. It suggests that

capital-embodied technological change raises skill premium and reduces the income

share of low-skill workers. At a more disaggregated level, Aum (2020) documents

that workers in middle-skill occupations tend to use equipment more, while those in

high-skill occupations tend to use software more in the US O*NET data. We think

that a richer framework that allows for multiple types of capital and heterogeneous

workers—for example, an enhanced version of the model in Aum et al. (2018)—is a

promising avenue for future research on the distributional consequences of techno-

logical progress.
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Appendix A Proofs

Proof of Proposition 1 From equations (8) and (9), we have the relative price between

wage and equipment price as:

w
r
=

αL
i

αK
i

(
AL

AK

) σe−1
σe
(

Ki

Li

) 1
σe

.

Taking logs, we have

(σe − 1) ln
w
r
= σe ln

αL
i

αK
i
+ (σe − 1) ln

AL

AK
+ ln

rKi

wLi
. (A.1)

Differentiating equation (A.1) with AL/AK fixed and using the definition of ki, we

obtain equation (15), which is the first part of Proposition 1.

Similarly, from equations (5), (8), (9), and (13), we have ϕi = pi(Yi/Vi)
1/σm(Vi/Xi)

1/σs .

Dividing it by (10), we obtain

ϕi

q
=

1
αS

i

(
1

AS

) σs−1
σs
(

Si

Xi

) 1
σs

.

Taking logs, we have

(σs − 1) ln
ϕi

q
= σs ln

1
αS

i
+ (σs − 1) ln

1
AS

+ ln
qSi

ϕiXi
. (A.2)

Differentiating equation (A.2) with AS fixed, we derive

σs − 1 =
d ln qSi

ϕiXi

d ln ϕi
q

. (A.3)

From the definition of ϕi in equation (13),

d ln ϕi =
1

1 +
(

αK
i

αL
i

)σe ( rAL
wAK

)1−σe
d ln w +

1

1 +
(

αL
i

αK
i

)σe (wAK
rAL

)1−σe
d ln r. (A.4)

Since
(

rαL
i

wαK
i

)σe ( AL
AK

)σe−1
w
r = wLi

rKi
from equations (8) and (9), inserting it into equation

(A.4) and using the definition of ki, we obtain

d ln ϕi = (1 − ki)d ln w + kid ln r.

Finally, we have ϕiXi = wLi + rKi from equations (5), (8), (9), and (13). Equation (A.3)

becomes

σs − 1 =
d ln qSi

wLi+rKi

(1 − ki)d ln w
q + kid ln r

q
,

which is the second part of Proposition 1.
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Proof of Corollary 1 Totally differentiating equation (A.1) and setting d ln w =

d ln r = 0, it is straightforward to see the first part of Corollary 1. Totally differentiat-

ing equation (A.3) and setting d ln q = 0 and following the same steps in the proof of

Proposition 2, the second part of Corollary 1 follows.

Proof of Proposition 2 Let the cost function of establishment i be ci ≡ c(Yi, w, r, q, p) =

wLi + rKi + qSi + pMi, and c = ∑i ci. Firstly, consider d ln w > 0, d ln r = 0, and

d ln q = 0.

Equipment-labor substitution From the definition of σ̄w
e (Definition 1),

σ̄w
e − 1 =

d ln rK
wL

d ln w
=

d ln k
1−k

d ln w
=

1
1 − k

d ln k
d ln w

=
1

k(1 − k)
dk

d ln w
. (A.5)

From the definition of k ≡ ∑ θiki,

dk = ∑
i

θidki + ∑
i

kidθi. (A.6)

From equation (15) in Proposition 1, we have

dki = (σe − 1)ki(1 − ki)d ln w. (A.7)

Denoting χ ≡ ∑i(ki−k)2

k(1−k) , we get 1−χ = ∑i θi(1−ki)ki
k(1−k) . Hence, equations (A.5)–(A.7) imply

that ∑i θidki
k(1−k)d ln w = (1 − χ)(σe − 1) and

σ̄w
e − 1 = (1 − χ)(σe − 1) +

1
k(1 − k) ∑

i
ki

dθi

d ln w
. (A.8)

We now turn to ∑i ki
dθi

d ln w . Following Oberfield and Raval (2021), we repeatedly

use that ∑i xdθi = 0 for any x not variying across i. For example, ∑i ki
dθi

d ln w = ∑i(ki −
k) dθi

d ln w = ∑i(ki − k)θi
d ln θi
d ln w . We will also use that ∑i x(ki − k)θi = 0 for any x not

varying across i.

Since θi = (1−si)(1−mi)ci
(1−s)(1−m)c , θid ln θi = d ln(1 − si) + d ln(1 − mi) + d ln ci − d ln(1 −

s)(1 − m)c. Note that σm − 1 = d ln mi/(1−mi)
d ln φi/ν , where φi refers to the price of labor-

equipment-software composite (i.e. φiVi = wLi + rKi + qSi). By Shephard’s lemma,
d ln φi
d ln w = ℓi. Also, we denote labor content of material as αw

ν ≡ d ln ν
d ln w , and assume that

labor content of material is the same as labor content in the final good (i.e. αw
ν = αw

p ≡
d ln p
d ln w ). Combining, we have d ln(1−mi)

d ln w = − dmi
(1−mi)d ln w = mi(ℓi − αw

p )(1 − σm). Similarly,

from d ln si/(1−si)
d ln ϕi/q , we have d ln(1−si)

d ln q = − dsi
1−si

= si(1 − ki)(1 − σs).

Taking together, and using that ∑i(ki − k)θid ln(1 − s)(1 − m)c = 0, we have

∑
i

ki
dθi

d ln w
= ∑

i
(ki − k)θi

[
d ln(1 − si)

d ln w
+

d ln(1 − mi)

d ln w
+

d ln ci

d ln w

]
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= ∑
i
(ki − k)θi

[
si(1 − ki)(1 − σs) + mi(ℓi − αw

p )(1 − σm) +
d ln ci

d ln w

]
,

(A.9)

where αw
p ≡ d ln p

d ln w = d ln ν
d ln w .

Differentiating cost function ci = c(Yi, w, r, q, p), d ln ci =
cY,iYi

ci
d ln Yi +

cw,iw
ci

d ln w.

From Shephard’s lemma, cw,iw/ci = ℓi(1 − mi) + miα
w
p . Constant returns to scale

implies cY,iYi
ci

= 1. Hence,

d ln ci

d ln w
=

d ln Yi

d ln w
+ ℓi(1 − mi) + miα

w
p . (A.10)

Substituting equation (A.10) into (A.9),

∑
i

ki
dθi

d ln w
= ∑

i
(ki − k)θi

[
si(ki − 1)σs − mi(ℓi − αw

p )σm + (1 − ki) +
d ln Yi

d ln w

]
= ∑

i
(ki − k)θi

[
(ki − 1)ζwσs − m̄w

e ((1 − ki)(1 − si)− αw
p )σm + (1 − ki) +

d ln Yi

d ln w

]
= ∑

i
(ki − k)θi

[
(ki − 1)ζwσs − m̄w

e ((1 − ki)(1 − ζw)− αw
p )σm + (1 − ki) +

d ln Yi

d ln w

]
= ∑

i
(ki − k)θi

[
(ki − k)(ζwσs + (1 − ζw)m̄w

e σm − 1) +
d ln Yi

d ln w

]
= k(1 − k)χ(ζwσs + (1 − ζw)m̄w

e σm − 1) + ∑
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d ln Yi

d ln w
.

(A.11)

Here, we denote

ζw ≡ ∑i(ki − k)(1 − ki)θisi

∑i(ki − k)(1 − ki)θi
, and m̄w

e ≡
∑i(ki − k)(ℓi − αw

p )θimi

∑i(ki − k)(ℓi − αw
p )θi

Substituting equation (A.11) into (A.8), we get

σ̄w
e = (1 − χ)σe + χ (ζwσs + (1 − ζw)m̄w

e σm) +
1

k(1 − k) ∑
i
(ki − k)θi

d ln Yi

d ln w
. (A.12)

Now we turn to d ln Yi
d ln w . We have aggregate Y that satisfies 1 = ∑i H(Yi/Y). And

cost minimization implies pi/p = H′(Yi/Y). Denoting the inverse of H′ with h, we

have

d ln Yi/Y = −ϵid ln pi/p, (A.13)

where ϵi ≡ − h′(pi/p)pi/p
h(pi/p) . The optimal markup will be µ(pi/p) = ϵ(pi/p)

ϵ(pi/p)−1 . Optimal

pricing implies pi = µ(pi/p)cY,i.
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We first define firm i’s local rate of price pass-through (bi ≡ d ln pi
d ln mci

≡ d ln pi
d ln cY,i

). Dif-

ferentiating optimal pricing condition, d ln pi =
µ′×pi/p

µ d ln pi + d ln cY,i. Rearranging,

we get bi ≡ d ln pi
d ln cY,i

= 1
1− µ′×pi/p

µ

.

Note that a change in wage would also affect aggregate price (αw
p ≡ d ln p

d ln w ). From

equation (A.13), we know that d ln Yi/Y is related to d ln pi/p. Since optimal pricing

implies pi/p = µ(pi/p)cY,i/p, differentiating gives

d ln pi/p
d ln w

=
µ′(pi/p)pi/p

µ(pi/p)
d ln pi/p

d ln w
+

d ln cY,i

d ln w
− d ln p

d ln w
.

Constant returns to scale and Shephard’s lemma implies d ln cY,i
d ln w = (1 − mi)ℓi + miα

w
p .

(Again, we assumed αw
p = αw

m.) Substituting it and rearranging,

d ln pi/p
d ln w

= bi(1 − mi)(ℓi − αw
p ) (A.14)

and

d ln Yi/Y
d ln w

= ϵibi(1 − mi)(α
w
p − ℓi). (A.15)

Now we use equation (A.15) to obtain

1
k(1 − k) ∑

i
(ki − k)θi

d ln Yi

d ln w
=

1
k(1 − k) ∑

i
(ki − k)θiϵibi(1 − mi)(α

w
p − ℓi)

=
1

k(1 − k) ∑
i
(ki − k)θi ϵ̄

w
e (1 − mi)(α

w
p − ℓi)

=
1

k(1 − k) ∑
i
(ki − k)θi ϵ̄

w
e (1 − m̄w

e )(α
w
p − ℓi)

=
1

k(1 − k) ∑
i
(ki − k)θi ϵ̄

w
e (1 − m̄w

e )
[
αw

p − (1 − ki)(1 − ζw)
]

=
1

k(1 − k) ∑
i
(ki − k)θi ϵ̄

w
e (1 − m̄w

e )(ki − k)(1 − ζw)

= χ(1 − ζw)(1 − m̄w
e )ϵ̄

w
e . (A.16)

Note that we denote

ϵ̄w
e ≡

∑i(ki − k)(1 − mi)(α
w
p − ℓi)θiϵibi

∑i(ki − k)(1 − mi)(αw
p − ℓi)θi

.

Finally, we obtain αp from ∑i
piYi
pY

d ln piYi/pY
d ln w = 0.

∑
i

piYi

pY
d ln Yi/Y

d ln w
= ∑

i

piYi

pY
(ϵi − 1)bi(1 − mi)(α

w
p − ℓi) = 0

⇒ αw
p =

∑i piYi(ϵi − 1)bi(1 − mi)ℓi

∑i piYi(ϵi − 1)bi(1 − mi)
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Finally, from equations (A.8) and (A.16), we now have

σ̄w
e = (1 − χ)σe + χ [ζwσs + (1 − ζw)m̄w

e σm + (1 − ζw − (1 − ζw)m̄w
e )ϵ̄

w
e ] ,

where

ζw ≡ ∑i(ki − k)(1 − ki)θisi

∑i(ki − k)(1 − ki)θi
,

m̄w
e ≡

∑i(ki − k)(ℓi − αw
p )θimi

∑i(ki − k)(ℓi − αw
p )θi

ϵ̄w
e ≡

∑i(ki − k)(1 − mi)(α
w
p − ℓi)θiϵibi

∑i(ki − k)(1 − mi)(αw
p − ℓi)θi

αw
p =

∑i piYi(ϵi − 1)bi(1 − mi)ℓi

∑i piYi(ϵi − 1)bi(1 − mi)
.

Software-labor substitution Similar to the proof in the equipment-labor substi-

tution, we begin with

σ̄w
s − 1 =

d ln s
1−s

(1 − k)d ln w
=

1
ℓs

ds
d ln w

. (A.17)

From the definition, s ≡ ∑ ωis, we also have

ds = ∑
i

ωidsi + ∑
i

sidωi. (A.18)

From Proposition 1, we know that

dsi = (σs − 1)si(1 − si)(1 − ki)d ln w = (σs − 1)siℓid ln w (A.19)

Now denote

ξw ≡ −∑i(ℓi − ℓ)(si − s)ωi

ℓs
.

Then it is straightforward to check

(1 − ξw) =
∑i ℓisiωi

ℓs
,

and so ∑i ωidsi = ℓs(1 − ξw)(σs − 1) from equation (A.19).

Therefore, from equation (A.17) and (A.18), we get

σ̄w
s − 1 = (1 − ξw)(σs − 1) +

1
sℓ ∑

i
si

dωi

d ln w
. (A.20)

Since ωi =
(1−mi)ci
(1−m)c , following similar steps in deriving equation (A.9) and (A.10),

we have

d ln ωi

d ln w
=

d ln(1 − mi)/(1 − m)

d ln w
+

d ln ci/c
d ln w
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=
d ln(1 − mi)

d ln w
+

d ln Yi

d ln w
+ ℓi(1 − mi) + miα

w
p − d ln(1 − m)

d ln w
− d ln c

d ln w
.

Since ∑i si
dωi

d ln w = ∑i(si − s) dωi
d ln w = ∑i(si − s)ωi

d ln ωi
d ln w ,

1
sℓ ∑

i
(si − s)ωi

d ln ωi

d ln w
=

1
sℓ ∑

i
(si − s)ωi

[
mi(ℓi − αw

p )(1 − σm) + (1 − mi)(ℓi − αp) +
d ln Yi

d ln w

]
=

1
sℓ ∑

i
(si − s)ωi

[
m̄w

s (ℓi − αw
p )(1 − σm) + (1 − m̄w

s )(ℓi − αp) +
d ln Yi

d ln w

]
=

1
sℓ ∑

i
(si − s)ωi

[
ℓi(1 − m̄w

s σm) +
d ln Yi

d ln w

]
=

1
sℓ ∑

i
(si − s)ωi

[
ℓi(1 − m̄w

s σm) + ϵibi(1 − mi)(α
w
p − ℓi)

]
=

1
sℓ ∑

i
(si − s)ωi

[
ℓi(1 − m̄w

s σm) + ϵ̄w
s (1 − m̄w

s )(α
w
p − ℓi)

]
=

1
sℓ ∑

i
(si − s)ωiℓi [(1 − m̄w

s σm)− ϵ̄w
s (1 − m̄w

s )]

=
1
sℓ ∑

i
−(si − s)(ℓi − ℓ)ωi [(m̄w

s σm − 1) + ϵ̄w
s (1 − m̄w

s )]

= ξw(m̄w
s σm + (1 − m̄w

s )ϵ̄
w
s − 1). (A.21)

Here, we denote

m̄w
s ≡

∑i(si − s)(ℓi − αw
p )ωimi

∑i(si − s)(ℓi − αw
p )ωi

, and ϵ̄w
s ≡

∑i(si − s)(1 − mi)(α
w
p − ℓi)ωiϵibi

∑i(si − s)(1 − mi)(αw
p − ℓi)ωi

Inserting equation (A.21) into equation (A.20), we get

σ̄w
s = (1 − ξw)σs + ξw [m̄w

s σm + (1 − m̄w
s )ϵ̄

w
s ] , (A.22)

where

ξw = −∑i(si − s)(ℓi − ℓ)ωi

sℓ

m̄w
s =

∑i(si − s)(ℓi − αw
p )ωimi

∑i(si − s)(ℓi − αw
p )ωi

ϵ̄w
s =

∑i(si − s)(1 − mi)(α
w
p − ℓi)ωiϵibi

∑i(si − s)(1 − mi)(αw
p − ℓi)ωi

Cases with d ln r > 0 and d ln q > 0 are analogous.

Proof of Proposition 3 Consider a case with d ln w > 0, d ln r = 0, and d ln w = 0.

We define aggregate markup as µ := ∑i µiωi. Note that we weight the establish-

ment i’s markup with i’s share of non-material cost (ωi = (wLi + rKi + qSi)/(wL +

rK + qS)).
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Changes in the aggregate markup responding to a change in wage is given by

d ln µ

d ln w
=

1
µ

dµ

d ln w
=

1
µ

[
∑

i
ωi

dµi

d ln w
+ ∑

i
µi

dωi

d ln w

]
(A.23)

Since pi = µi × mci, from the definition of price pass-through (bi ≡ d ln pi
d ln mci

) and

Shephard’s lemma ( d ln mci
d ln w = ℓi(1 − mi) + miα

w
p ), we have

d ln µi

d ln w
= (bi − 1)[ℓi(1 − mi) + miα

w
p ] = (bi − 1)ℓ̃i, (A.24)

where we denote ℓ̃i ≡ ℓi(1 − mi) + miα
w
p for notational convenience. Using equation

(A.24),

∑
i

ωi
dµi

d ln w
= ∑

i
ωiµi ℓ̃i(bi − 1) = µℓ̃(1 − ηw)(b̄w − 1), (A.25)

where, we define

ηw := −∑i(µi − µ)(ℓ̃i − ℓ̃)ωi

µℓ̃
, and b̄w := ∑i µi ℓ̃ibiωi

∑i µi ℓ̃iωi
.

Also, following a similar calculation in equation (A.21),

∑
i
(µi − µ)ωi

d ln ωi

d ln w
= ∑

i
(µi − µ)ωi

[
mi(ℓi − αw

p )(1 − σm) + ℓ̃i +
d ln Yi

d ln w

]
= ∑

i
(µi − µ)ωi

[
(ℓ̃i − αw

p )(σm − 1)− (ℓi − αw
p )(σm − 1) + ℓ̃i − ϵibi(ℓ̃i − αw

p )
]

= ∑
i
(µi − µ)ωi

[
−ℓi(σm − 1) + ℓ̃iσm − ϵibi(ℓ̃i − αw

p )
]

= ∑
i
(µi − µ)ωi

[
−ℓi(σm − 1) + ℓ̃i(σm − ϵ̄w

µ )
]

= ∑
i
(µi − µ)ωi(ℓi − ℓ)(1 − σm) + ∑

i
(µi − µ)ωi(ℓ̃i − ℓ̃)(σm − ϵ̄w

µ )

= µℓ̃ιw(σm − 1) + µℓ̃ηw(ϵ̄w
µ − σm), (A.26)

where, we define

ϵ̄w
µ :=

∑i(µi − µ)(ℓ̃i − αw
p )ωiϵibi

∑i(µi − µ)(ℓ̃i − αw
p )ωi

, and ιw := −∑i(µi − µ)(ℓi − ℓ)ωi

µℓ̃
.

Combining equation (A.23), (A.25), and (A.26), we get

d ln µ

ℓ̃d ln w
= (1 − ηw)b̄w + ηwϵ̄w

µ − 1 + (ιw − ηw)(σm − 1),

with

ηw ≡ −∑i(µi − µ)(ℓ̃i − ℓ̃)ωi

µℓ̃
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b̄w ≡ ∑i µi ℓ̃ibiωi

∑i µi ℓ̃iωi

ϵ̄w
µ ≡

∑i(µi − µ)(ℓ̃i − αw
p )ωiϵibi

∑i(µi − µ)(ℓ̃i − αw
p )ωi

ιw ≡ −∑i(µi − µ)(ℓi − ℓ)ωi

µℓ̃

Cases with d ln r > 0 and d ln q > 0 are analogous.

Proof of Proposition 4 Denoting firm i’s capital other than equipment and software

with Oi and its price o, the aggregate labor income share is

LS =
∑i wLi

∑i piYi
=

∑i wLi

∑i µi(wLi + rKi + qSi) + ∑i µioOi

=
∑i ℓiωi

∑i µi(ωi +
oOi

wLi+rKi+qSi
ωi)

=
ℓ

∑i µiωi(1 + oi)
.

For ∑i µiωi(1 + oi),

d ∑
i

µiωi(1 + oi) = ∑
i

d(µiωi)(1 + oi) + ∑
i

µiωid(1 + oi).

Assuming, σo = 1, we have ∑i µiωid(1 + oi) = 0, and hence

d ∑
i

µiωi(1 + oi) = ∑
i

d(µiωi)(1 + oi).

That is, in principle, the distribution of the income share of other capital across firms

can affect the weights for aggregating markups. To simplify the decomposition, how-

ever, we assume (1 + oi) = (1 + ō) for all i. Then we have

dLS
LS

= d ln ℓ− d ln µ.

Therefore, the impact of software-embodied technological change on aggregate labor

share is given by

dLS
−d ln q

= −LS ×
[
s(σ̄q

s − 1)− s̃(σ̄q
µ − 1)

]
.

Similarly, the impact of equipment-embodied technological change is

dLS
−d ln r

= −LS ×
[
−se(σ̄r

s − 1) + e(σ̄r
e − 1)− κ̃(σ̄r

µ − 1)
]

.

Finally, an increase in wages results in

dLS
d ln w

= −LS ×
[
s(1 − e)(σ̄w

s − 1)− (1 − e)(σ̄w
e − 1) + ℓ̃(σ̄w

µ − 1)
]

.
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Appendix B Data

B.1 National Accounts
B.1.1 Price index

When measuring capital-embodied technological change, we rely on the price indices

of investment and consumption goods obtained from the Korean national accounts. A

notable drawback of using the Korean national accounts is that the software price in-

dex would not fully capture software-embodied technological change. Since 1994, the

software price index comes from the producer price index, potentially inadequately

reflecting quality improvements. To address this concern, we adopt the adjustment

method proposed by Parker and Grimm (2000), the approach taken by the US Bureau

of Economic Analysis (BEA). Specifically, BEA makes a bias adjustment of 3.15 per-

cent per year to the producer price index from the Bureau of Labor Statistics due to

the discrepancy between the hedonic method and the matched model method. Ac-

cordingly, we apply a bias adjustment of 3.15 percent per year to the software price

index from 1994 onward. The resulting software price index in Korea exhibits similar-

ity with the BEA price index for the US, affirming the reliability of our method, given

that software technology is expected to be consistent between Korea and the US.

B.1.2 The Rate of Return on Capital

A standard macro model predicts that the rate of return on capital for each capital

type j satisfies the following condition:

Rj,t = (1 + rt)qj,t − (1 − δj,t)qj,t−1,

where rt is the net rate of return, qj,t is the price of capital relative to consumption

for capital type j, and δj,t is the depreciation rate for capital type j. We calculate qj,t

using the capital price index and the price of consumption in the National Accounts

(with a bias-adjusted software price, as described earlier). The depreciation rate δj,t is

computed from net capital stock and investment using the formula:

δj,t =
NKj,t−1 × πk

j,t − NKj,t + NIj,t

NKj,t−1 × πk
j,t

,

where NKj,t is the nominal capital stock at the end of period t for capital type j, NIj,t is

the nominal investment at time t for capital type j, and πk
j,t is the ratio of capital price

index between time t and t − 1 for capital type j.
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For the net rate of return, rt, we consider two approaches. First we estimate rt

by the corporate bond rate net of expected inflation, where expected inflation is mea-

sured by a three-year moving average of the CPI inflation rate. Second, we use the

estimated aggregate markup and equation (B.1) to back out rt:

LSt =
wLt

µt(wLt + ∑j Rj,tKj,t)
, (B.1)

where wLt is the compensation of employees (adjusted for proprietor’s income) and

µt is the aggregate markup estimated from the firm-level data. We chose the second

approach in our decomposition analysis. However, the specific choice of approach

makes a minimal difference in our results.

B.1.3 Labor Share

Total income in the national economy includes the proprietors’ income, a mix of labor

and capital income. Gollin (2002) suggested several methods to estimate the labor

share of the proprietors’ income. One such method assumes that the labor share in

proprietor’s income is the same as that of the rest of the economy (M1):

M1 : LS =
CE + NLS ∗ PI

Y
,

with NLS =
CE

Y − CFC − PI

where CE represents compensation of employees, PI is proprietors’ income, CFC is

consumption of fixed capital, NLS is net labor share, and Y is either gross value added

(without net production tax) or gross domestic product (with net production tax).

To be consistent with the theory in this paper, we compute gross labor share, which

includes the consumption of fixed capital in the denominator.

Given the substantial presence of self-employment in the Korean economy, the

measurement of labor share is sensitive to the treatment of the proprietor’s income.

In particular, Park (2020) highlighted that a sizable proportion of self-employed is

working with employees, whose wages are included in the compensation of employ-

ees measured in the national accounts. He proposed explicitly considering this factor

in constructing aggregate labor share. Specifically, he utilizes information that the ra-

tio of business income between self-employed with employees and without employee

is approximately 2.3, and self-employed with employees hire 2.5 workers on average.

Assuming that labor share of self-employed without employees is the same as labor

share of the rest of the economy, we get the following (M2):

M2 : LS =
CE + NLS ∗ PI0 + NLS ∗ PIe/3.5

Y
,
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with PI0 = PI × self0

self0 + 2.3 × selfe

PIe = PI − PI0

NLS =
CE

Y − CFC − PI0

where selfe and self0 are the number of self-employed with and without employees,

respectively. Also, PIe and PI0 refer to the income of self-employed with and without

employees, respectively.

Alternatively, one can assume that labor share of the entire self-employed is the

same as the labor share of the corporate sector (M4: C) or the rest of the economy

(M4: C&G). To do so, we need to subtract labor income of workers working with

self-employed from the compensation of employees. Unfortunately, Korean national

accounts provide such information only from 2010. Instead, we can assume that the

wage of workers working with self-employed is the same as the average wage of

workers working in an establishment with the size of 5 to 9 employees, with an aver-

age number of workers working with self-employed being 3.5 (M3):

M3 : LS =
CE × (1 − self0×2.5

wemp × wr) + NLS ∗ PI

Y
,

with NLS =
CE × (1 − self0×2.5

wemp × wr)

Y − CFC − PI

where wemp is wage employment and wr is the ratio of the average wage of workers

working in an establishment with size of 5 to 9 relative to the average wage of workers

in all establishments.

Figure B.1 shows the calculated aggregate labor share using alternative ap-

proaches. While the magnitude of the decrease in labor share varies depending on

methods, the patterns are generally similar, especially for gross labor share. For net

labor share, the declining trend is mitigated when adjusting for self-employment with

employees (M2). Because the rate of return on capital should include depreciation, we

stick to gross labor share in our analysis. This is particularly crucial considering our

focus on software, which typically has a higher depreciation rate than other factors.

It is noteworthy that Karabarbounis and Neiman (2014) showed in a simple model

that during a transition where the main shock to the economy is a decline in the

price of high depreciation capital, gross labor share falls while net labor share rises.

Importantly, in such cases, gross labor share serves as a better measure of changes in

welfare among agents. In the main text, we use a conservative measure, M2:GDP, as

a baseline measure of aggregate labor share.
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Fig. B.1: Aggregate labor share in Korea

M1 assumes that labor share in income of self-employed is the same as that of the rest of the
economy. M2 assumes that labor share in income of self-employed without employees is
the same as that of the rest of the economy. M3 assumes that the average wage of employees
working with self-employed is equal to the average wage of workers working in plants
with size 5 to 9. M4 calculates labor share of the corporate sector (M4-C) or corporate and
government (M4-C&G). The denominator is either GDP or GVA in gross labor share and
either GDP or GVA net of consumption of fixed capital in net labor share.

B.2 KISDATA

KISDATA is a database on financial information for firms listed on the Korea Stock

Exchange and firms unlisted but required to publish external auditing reports. The

criteria for external audit requirement is as follows. Until 2008, firms whose asset

value exceeded 7 billion KRW had to be audited externally. Since 2009 (2014), firms

with (i) asset value greater than 10 billion (12 billion) KRW, (ii) asset value greater than

7 billion KRW and liability greater than 7 billion KRW, or (iii) asset value greater than

7 billion KRW and more than 300 employees were subject to external audits. Among

firms in KISDATA, we exclude financial firms and quasi-governmental and non-profit

firms from the sample. Our data runs from 2003 to 2018.

B.2.1 Labor Share

To construct labor shares, we need data on labor compensation and value added. We

combine employee compensation and benefits in income statements and labor costs

in manufacturing cost statements to obtain firms’ total labor compensation. Note that

the employee compensation and benefits in an income statement can be understood

as the labor income accruing to non-production workers, while the labor cost in a
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manufacturing cost statement as the labor income accruing to production workers.

To compute value added, we add up operating profit, depreciation and amortiza-

tion, taxes and dues, and labor compensation. The labor share at the firm level is then

computed by dividing labor compensation by value added. In the regression analysis,

we restrict our sample to those with labor shares between zero and one.

B.2.2 Software and Equipment Capital

We use the variable “intangible asset - software” in firms’ balance sheets to measure

their software asset. According to Korean Generally Accepted Accounting Principles

(K-GAAP), a firm classifies its software purchases from outside as software assets. A

firm may have software developed in-house as an intangible asset, but this component

is not included in our analysis. It can be included in research and development in

principle, but not separately reported. Our measure of equipment capital is the sum

of machinery, transportation equipment, tools, fixtures, and furniture, reported in

balance sheets. For the reduced form regression in Section 2, we divide software asset

and equipment asset by value added to measure software intensity and equipment

intensity, respectively.

B.2.3 Markup

We consider five different approaches to measure firm-level markups. Our procedure

for the construction of markup follows Baqaee and Farhi (2019) and Edmond et al.

(2018) to a large extent.

Accounting Profit (AP) For the accounting profit approach, we use operating

profit to measure profits and use the expression

operating profit =
(

1 − 1
µAP

)
sales (B.2)

to get µAP for each firm in each year.

User Cost (UC) We assume that the operating surplus is

OS = RK +

(
1 − 1

µUC

)
sales, (B.3)

where OS is the operating income (with depreciation), R is the user cost of capital,

and K is the stock of capital. We compute the sum of sales net of cost of goods sold

and depreciation as OS, and the sum of tangible and intangible assets as K.
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The user cost of capital is given by

Ri,t = (1 + rt)− (1 − δi,t)Et pk
i,t+1/pk

i,t, (B.4)

where rt is the average real rate of corporate bond, δi,t is the industry-level deprecia-

tion rate implied in the National Account, and Et pk
i,t+1/pk

i,t is the three-year moving

average of the changes in the relative price of capital to consumption by industry. We

then back out µUC from equations (B.3) and (B.4).

Production Function (PF) For the production function approach, we estimate the

elasticity of output with respect to variable inputs following Baqaee and Farhi (2019)

and De Loecker et al. (2020).

To estimate elasticity, we need an outcome variable (log sales), free variable (log

cost of goods sold), state variable (log capital stock), and proxy variable (log invest-

ment). We deflate sales and cost of goods sold with gross value added deflator by

industry and deflate capital expenditure with gross fixed capital formation deflator

by industry. To compute capital stock, we apply the perpetual inventory method

(PIM) with the initial level of tangible and intangible capital and capital expenditure.

We also control for sales shares in one-digit and two-digit industries in the estimation.

We exclude samples with the cost of goods sold to sales ratio or selling, the general

and administrative expense to sales ratio in the top and bottom 2.5 percentiles by year.

We also exclude agriculture and the finance and insurance industry.

The elasticity is estimated as in Olley and Pakes (1996) with three-year rolling

windows by one-digit industry. Then µPF is

µPF =
∂ log F/∂ log X

X/Y
, (B.5)

where F is the production function, X is variable input (cost of goods sold), and Y is

sales turnover.

Cost Minimization (CM1 & CM2) One of main challenges in estimating markup

lies in the difficulty of estimating the output elasticity (∂ log F/∂ log X) in equation

(B.5). For instance, Bond et al. (2021) argues that production function estimation based

on revenue data (as in PF) offers little insight into firm-level markups, while Ridder

et al. (2022) proposes that revenue data can still offer valuable information on the

dispersions and trends of markups, albeit with a biased estimation of markup levels.

One way to circumvent this issue is to indirectly use an optimal condition derived

from cost minimization. Considering labor as a variable input, for example, cost min-
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imization under the constant returns to scale technology implies:

∂ log Fi

∂ log ℓi
=

wℓi

wℓi + rKi + qSi + pMi
(B.6)

Instead of directly estimating the output elasticity, one can use equation (B.6) together

with equation (B.5) to compute the markup. In practice, one can use either firm-level

cost share (CM1, Oberfield and Raval, 2021) or cost-weighted average at industry-

level (CM2, Edmond et al., 2018).

Selection of Benchmark Markup When computing distributional moments ac-

cording to Proposition 2 and 3, we choose the markup estimated according to cost

minimization (CM1) as the benchmark, and compute the demand elasticity that each

firm faces according to:

ϵi =
µi

µi − 1
(B.7)

Because we need µi > 1 to apply equation (B.7), we trimmed observations with a

markup less than 1.01 as well as those greater than 10. We selected markup CM1 as

the benchmark for mainly four reasons summarized in Table B.1. First, among the

considered markup measures, CM1 has the fewest observations with µ̂ < 1 that are

trimmed in the analysis. Second, the markup CM1 has the fewest missing values for

observations with positive software assets, which are crucial in our analysis. Third,

CM1 is a markup measure that aligns directly with our theory. Fourth, all the markup

measures produce similar results in the quantification, except for the case of CM2,

which shows about twice the magnitude of effects on aggregate markup.

Share of obs. w/ # missing µ

with sft> 0
Decomposition results

µ < 1.01 µ > 10 Overall Substitution Markup

AP 0.231 0.000 8,352 -0.029 -0.020 -0.008
UC 0.089 0.000 8,701 -0.027 -0.015 -0.012
PF 0.330 0.005 16,435 -0.027 -0.015 -0.012
MC1 0.058 0.006 1,766 -0.029 -0.014 -0.015
MC2 0.196 0.027 9,425 -0.051 -0.014 -0.038

Table B.1: Summary on alternative markups

The first and second columns show the share of observations with estimated markup
below 1.01 and above 10, respectively. The third column counts the number of miss-
ing or trimmed observations with information on software assets. The fourth to sixth
columns show decomposition results on the effects of software-embodied technolog-
ical change, as in Section 5, with alternative markup measures.
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B.2.4 Pass Through

We compute each firm’s price pass-through (bi) using the relationship between the

markup and the pass-through under the demand aggregator proposed by Klenow

and Willis (2016), which is represented by equation (38), or

bi =
1

1 − µ′x
µ

=
1

1 + µi
ν
σ

.

We follow Edmond et al. (2018) when setting a value to super-elasticity, or

ν/σ. Specifically, under the Klenow-Willis specification, each firm’s sales share and

markup follow the relationship:

1
µi,t

+ ln
(

1 − 1
µi,t

)
= constant +

ν

σ
ln shi,t, (B.8)

where shi,t represents the sales share of firm i at time t. We estimate equation B.8

controlling for firm and year fixed effects. The estimated parameter for the super-

elasticity ν/σ is 0.113, with a standard error clustered at the firm-level of 0.00227.

B.3 Census

Our data source for the cross-sectional estimation of the elasticity of substitution be-

tween labor and capital is the Korean Economic Census 2015. It surveys all estab-

lishments in the manufacturing sector with more than one employee as of December

31, 2015. We exclude branches, sole proprietorships, governmental and non-profit es-

tablishments as they do not report intangible assets. We use annual payroll for wLi,

equipment capital (machinery and transportation equipment) for Ki, and software

assets for Si. We drop all establishments that did not report whether they have intan-

gibles. When an establishment explicitly reports that it does not hold intangibles, we

assign zero to its Si. To compute the factor income shares, we use the rate of return on

equipment and software (r and q) imputed from the National Accounts. We winsorize

factor shares at the first and the 99th percentiles.

B.3.1 Distribution of Factor Shares

The Census data includes the location of establishments. The unit of a region in our

analysis is Si-Gun-Gu, an administrative division of Korea, comparable with com-

muting zones in the US in terms of the average population size. Figure B.2 shows

the regional distribution of software (si), equipment (ki), and labor shares (ℓi) in non-

material costs.
27Edmond et al. (2018) estimated the same equation using US data and obtained a super-elasticity of

0.16.
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(a) Software (si) (b) Equipment (ki) (c) Labor (ℓi)

Fig. B.2: Factor Expenditure Shares by Region

The colors represent the quantiles of regions in the distribution of factor shares on
non-material cost, with darker colors corresponding to higher quantiles.

Although not visually apparent, the covariance between software shares (si) and

equipment shares (ki) is positive and the covariance between software shares (si) and

labor shares (ℓi) is negative, indicating that factor shares are not always negatively

correlated in the case of three factors. These relationships are more clear in Figure B.3.

(a) Software Share vs. Equipment Share (b) Software Share vs. Labor Share

Fig. B.3: Relationship between Software Share and Labor or Equipment Share

Each circle is a region. The horizontal axis is the average software share of all firms in
a region. The vertical axis is a region’s equipment share in the left panel and its labor
share in the right panel. The size of the circle corresponds to a region’s value added.
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B.4 Regional Employment Survey

We use wage differences across regions as our explanatory variable when estimating

the micro elasticities of substitution. We obtain the wages from the 2015 Regional

Employment Survey. The Regional Employment Survey is a household-level survey

of workers’ salary, demographic information, educational attainment, and experience.

We control for workers’ observable characteristics such as education, experience, and

demographics. We then aggregate the residual wages to the region level for regional

variation in labor costs.

B.4.1 Bartik instrument

The residualized local wages may be correlated with unobservable productivity that

is not factor-neutral. To address this concern, we use Bartik (1991) instrument. Our

instrument is

Zr = ∑
i∈Ns

ωr,i,0 log(Li,t/Li,0)

where Ns is the set of service industries, ωr,i,0 is the industry i’s share of employment

in region r at time 0, and Li,t is the nationwide employment of industry i at time t.

According to Goldsmith-Pinkham et al. (2020), the Bartik estimator β̂bartik can be

rewritten as the weighted sum of the just-identified estimators with one industry’s

regional share as an instrument, β̂bartik = ∑i α̂i β̂i, where αi’s are known as Rotem-

berg weights. Table B.2 is a summary of the Rotemberg weights. Panels A and

C show that two industries with the largest Rotemberg weights account for 95 per-

cent (=0.527+.425) of the overall weights and 65 percent (=0.952/1.457) of the positive

weights in the estimator. They are the research and development industry and busi-

ness support services industry. The contribution of these two industries are shown by

the two large circles in Figure B.4.

Panel B shows that the national growth rates of service industries indexed by i

(gi = Li,t/Li,0) are also positively correlated with the weights, while the variance of an

industry share across regions (var(ωi)) are only weakly correlated with the weights.

Regarding the identification with Bartik instruments, Borusyak et al. (2021) shows

that one needs to assume either the initial shares are exogenous or the shocks are ex-

ogenous. In particular, a Bartik regression can be translated into a shock-level regres-

sion with a specific weight (si = ∑r ωr,i) when shocks are exogenous. For an original

IV regression yr = α + βxr + εr with Bartik instrument zr, an equivalent shock-level
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Sum Mean Share

Panel A. Negative and positive weights
Negative -0.457 -0.038 0.239
Positive 1.457 0.066 0.761

α̂i gi F̂i var(ωi)

Panel B. Correlations
α̂i 1.000
gi 0.244 1.000
F̂i 0.597 0.114 1.000

var(ωi) -0.034 -0.104 0.098 1.000

α̂i gi σ̂e σ̂s ∑i
k=1 α̂k

Panel C. Top Rotemberg weight industries
Research & development 0.527 0.316 0.326 2.387 0.527
Business support services 0.425 0.182 0.130 1.427 0.952

Warehousing and transportation 0.108 0.165 0.045 0.319 1.060
Retail trade (except motor) 0.061 -0.023 -0.647 1.904 1.122

Table B.2: Summary of the Rotemberg Weights

Panel B reports correlations among the Rotemberg weights (α̂i), the nationwide employment
growth of industry i (gi = Li,t/Li,0), the first-stage F-statistic of the industry share (F̂i), and the
variance of a given industry’s employment share across regions (var(ωi)).
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(b) Software (σ̂s)

Fig. B.4: Heterogeneity of the elasticities

The figure plots the relationship between each instruments’ σ̂j, first-stage F-statistics, and the
Rotemberg weights. Each point is a separate instrument’s estimate. The estimated (σ̂j) for each
instrument is on the y-axis and the estimated first-stage F-statistic is on the x-axis. The size of
the points is scaled by the absolute value of the Rotemberg weights, with circles for positive
weights and diamonds for negative weights. The dashed line is at the estimated elasticity using
the Bartik instrument. Instruments with first-stage F-statistics below 5 are excluded.
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regression is a si-weighted IV regression, using the shocks gi as instrument, estimating

ȳi = α + βx̄i + ε̄ i.

While the point estimates β̂ are equivalent in both approaches, Borusyak et al.

(2021) shows that the shock-level regression provides a correct inference when shocks

are exogenous but shares are endogenous. That is, the Bartik instrument is valid when

shocks are randomly assigned (and have a common mean). Regarding the consistency

of the estimator, the effective sample size of the shock-level regression is large when

the expected Herfindahl index of average shock exposure (∑i s2
i ) converges to zero as

the number of regions increases.

For the shock-level regression, one needs to think carefully about the regional

weights ωr,i’s. When ∑i ωr,i varies across regions, it can generate non-random varia-

tions in addition to quasi-random variations of shocks. Borusyak et al. (2021) shows

that one can address this concern by controlling for ∑i ωr,i in the regression. Because

we construct Bartik instrument using services industries, we can consider two kinds

of weights: (i) construct ωr,i with services employment only, so that ∑i ωr,i = 1 for all

r, or (ii) construct ωr,i with total employment in the region, so that ∑i ωr,i ≤ 1 varies

across r. We consider the former (i) as a benchmark and (ii) as a robustness check.

Table B.3 reports summary statistics of shocks gi = Li,t/Li,0 and the inverse of

the Herfindahl index of industry weights (1/ ∑i s2
i ). In the regional employment sur-

vey, only two-digit industries are reported, so we have a total of 34 service indus-

tries. When we construct ωr,i with total regional employment, a residual industry

with share ωr,0 = 1 − ∑i∈Ns
ωr,i can be thought as one with zero growth. Summary

statistics in this case are reported in the first column of Table B.3. In the second case,

we consider only service industries so that ∑i∈Ns
ωr,i = 1, reported in the second col-

umn of Table B.3. The non-service industry has a large share of regional employment,

and hence it generates a much smaller interquartile range and larger HHI, leading to

a smaller effective sample size (Column (1) in Table B.3). This suggests that we want

to choose between constructing weights only with service industries (Column (2) in

Table B.3).

Table B.4 reports the results from the shock-level regression with only service em-

ployment (column 1) and with total employment controlling for the initial share of

non-service employment (column 2). We have σe < 1 and σs > 1 in both cases, but

the standard errors are much larger than those clustered at the level of region and

three-digit industry. These results are also reported in Table 2 as SSIV1 and SSIV2. In

column 3 and column 4, we also report shock-level regression results with an instru-
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With Total Employment With Service Employment
(1) (2)

Mean gi 0.030 0.053
Standard Deviation gi 0.091 0.116
Interquartile Range gi 0.005 0.100

1/HHI 4.78 12.70
Maximum si 0.429 0.155
No. of industries 35 34

Table B.3: Summary Statistics of Shocks (gi) and Industry Weights (si)

ment of which share includes industrial network structure.

The standard errors are large as we have a small effective sample size, and do not

utilize establishment level information here. To be specific, as shown in Table B.3, we

only have 34 two-digit service industries in the regional employment survey where

the inverse of HHI is only 12.70 even when we exclude non-service industries.

Cross-Sectional Shock-level

Complete
share

Incomplete
share

Complete
share

Incomplete
share

Equipment (σe) 0.600 -0.164 0.600 -0.164
(0.153) (0.165) (1.051) (0.815)

Software (σs) 1.620 2.736 1.620 2.736
(0.230) (0.253) (0.879) (0.928)

First stage F 693.7 567.5 7.025 7.201
Obs. 31,403 31,403 34 34

Table B.4: Estimation Results: Shock-level Regression

Appendix C Robustness of Decomposition

In this section, we redo decomposition analysis in Section 5 with alternative ap-

proaches in various perspectives.

C.1 Alternative Data

We check whether our decomposition results remain robust with aggregate elastici-

ties computed with Census data. Because we have software information only in the

year 2015 for the manufacturing sector, we calculate distributional moments with 2015
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Census data for manufacturing plants. Since the distributional moments do not ex-

hibit a clear time trend (Figure 5), our main results will likely remain even if we used

the aggregate elasticities based on the 2015 Census distributional moments for all pe-

riods.

Table C.1 reports the decomposition with aggregate elasticities computed from

Census data. With aggregate elasticities from Census data, the aggregate markup

rises less and there is slightly more factor substitution through between-firm real-

location. In addition, equipment-embodied technological change reduces the labor

share less due to attenuated between adjustments in factor substitution. Overall,

capital-embodied technological changes (software and equipment combined) account

for about 57.7 percent of the decline in the aggregate labor share in the data.

• Total changes in labor share : -0.044

• Effects of Software-embodied Technological Change (∆ ln 1/q)

Total
Factor Substitution Markup

Overall Within Between Overall Within Between

Changes -0.025 -0.016 -0.015 -0.001 -0.010 -0.007 -0.003
(% explained) (57.5) (35.4) (33.0) (2.4) (22.0) (15.7) (6.4)

• Effects of Equipment-embodied Technological Change (∆ ln 1/r)

Total
Factor Substitution Markup

Overall Within Between Overall Within Between

Changes -0.000 +0.008 +0.014 -0.006 -0.009 -0.009 +0.000
(% explained) (0.3) (-19.2) (-32.8) (13.6) (19.5) (19.7) (-0.2)

Table C.1: Effects of Capital-Embodied Technological Change with Census Data

The decomposition is for the periods between 1990 and 2018. Percent explained of the overall
labor share decline in the data in parentheses.

C.2 Alternative Pass-through

Baqaee et al. (2023) argued that the Klenow-Willis specification may produce too lit-

tle variation in price pass-through, compared to the empirical estimates of the price

pass-through from Belgian firm data, potentially attenuating the magnitude of real-

location. To be specific, when estimating bi from reasonably estimated µi using the

Klenow-Willis specification, the resulting pass-throughs (bi) show insufficient varia-

tion compared to the empirical bi provided by Amiti et al. (2019). Instead of relying on
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Fig. C.1: Effects of Capital-Embodied Technological Change with Census Data

The overall effect is calculated using the macro elasticity (σ̄) and the within effect is computed
based on the micro elasticity (σ) and the average pass-through (b̄). The between effect is the
difference between the effects based on macro elasticity and micro elasticity.

the Klenow-Willis specification, Baqaee et al. (2023) suggested using empirical pass-

through and sales share to back out the markup. Specifically, They characterized the

theoretical relationship among markup, sales share, and pass-through as follows:

d log µi = (µi − 1)
1 − bi

bi
d log λi, s.t. Eλ[µ

−1
i ]−1 = µ̄, (C.1)

where µi represents firm i’s markup, bi is the pass-through, and λi is the sales share.

Using the empirical relation between pass-through (bi) and sales share (λi) of Belgian

firms, Baqaee et al. (2023) back out µi from equation (C.1).

To assess the impact on our decomposition, we examine the relationship between

empirical bi and µi from equation (C.1), using the empirical pass-through of Amiti

et al. (2019) and the sales share of Korean firms (λi) from Census data28. We then

use the relationship between bi and µi implied by equation (C.1) to impute firm-level

pass-through (bi), corresponding to its empirical markup (µi).

Table C.2 reports the decomposition results with aggregate elasticities computed

with alternative pass-through. As expected, a higher dispersion in pass-through am-

plifies markup channel. With alternative pass-through, the aggregate markup rises

0.06 percentage points more while factor substitution is rarely affected. For equip-

ment, an increase in markup is more pronounced: Markup channel reduces labor

share 1.6 percentage points more than the baseline case, while between adjustment

28More specifically, Amiti et al. (2019) provides empirical bi by a firm’s employment size. We match
Amiti et al. (2019)’s bi with Korean λi, corresponding to the same employment density.
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in factor substitution is slightly attenuated. Overall, capital-embodied technological

changes (software and equipment combined) account for all the decline in the aggre-

gate labor share observed in the data.

• Total changes in labor share : -0.044

• Effects of Software-embodied Technological Change (∆ ln 1/q)

Total
Factor Substitution Markup

Overall Within Between Overall Within Between

Changes -0.034 -0.013 -0.015 +0.001 -0.021 -0.018 -0.003
(% explained) (78.0) (30.5) (33.0) (-2.5) (47.5) (40.1) (7.4)

• Effects of Equipment-embodied Technological Change (∆ ln 1/r)

Total
Factor Substitution Markup

Overall Within Between Overall Within Between

Changes -0.014 +0.011 +0.014 -0.004 -0.025 -0.024 -0.001
(% explained) (31.9) (-24.2) (-32.8) (8.6) (56.0) (54.8) (1.2)

Table C.2: Effects of Capital-Embodied Technological Change with Alternative Pass-Through

The decomposition is for the periods between 1990 and 2018. Percent explained of the overall
labor share decline in the data in parentheses.
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Fig. C.2: Effects of Capital-Embodied Technological Change with Alternative Pass-Through

The overall effect is calculated using the macro elasticity (σ̄) and the within effect is computed
based on the micro elasticity (σ) and the average pass-through (b̄). The between effect is the
difference between the effects based on macro elasticity and micro elasticity.
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